

The ATM Forum Technical Committee

Cell-Based 1000 Mbit/s (CB1G) Physical Layer Specification over Single-mode or Multi-mode Fiber and Category 6 Twisted Pair Copper Cabling

af-phy-0162.000

April 2001
© 2000 by The ATM Forum. This specification/document may be reproduced and distributed in whole, but (except as provided in the next sentence) not in part, for internal and informational use only and not for commercial distribution. Notwithstanding the foregoing sentence, any protocol implementation conformance statements (PICS) or implementation conformance statements (ICS) contained in this specification/document may be separately reproduced and distributed provided that it is reproduced and distributed in whole, but not in part, for uses other than commercial distribution. All other rights reserved. Except as expressly stated in this notice, no part of this specification/document may be reproduced or transmitted in any form or by any means, or stored in any information storage and retrieval system, without the prior written permission of The ATM Forum.

The information in this publication is believed to be accurate as of its publication date. Such information is subject to change without notice and The ATM Forum is not responsible for any errors. The ATM Forum does not assume any responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary, neither The ATM Forum nor the publisher make any representation or warranty, expressed or implied, concerning the completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind shall be assumed by The ATM Forum or the publisher as a result of reliance upon any information contained in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

- Any express or implied license or right to or under any ATM Forum member company's patent, copyright, trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained herein; nor
- Any warranty or representation that any ATM Forum member companies will announce any product(s) and/or service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein; nor
- Any form of relationship between any ATM Forum member companies and the recipient or user of this document.

Implementation or use of specific ATM standards or recommendations and ATM Forum specifications will be voluntary, and no company shall agree or be obliged to implement them by virtue of participation in The ATM Forum.

The ATM Forum is a non-profit international organisation accelerating industry co-operation on ATM technology. The ATM Forum does not, expressly or otherwise, endorse or promote any specific products or services.

NOTE: The user's attention is called to the possibility that implementation of the ATM interoperability specification contained herein may require use of an invention covered by patent rights held by ATM Forum Member companies or others. By publication of this ATM interoperability specification, no position is taken by The ATM Forum with respect to validity of any patent claims or of any patent rights related thereto or the ability to obtain the license to use such rights. ATM Forum Member companies agree to grant licenses under the relevant patents they own on reasonable and non-discriminatory terms and conditions to applicants desiring to obtain such a license. For additional information contact:

The ATM Forum

World-wide Headquarters
1000 Executive Parkway, Suite 220
St. Louis, MO 63141
Tel: $\quad+13142050200$
Fax: +13145767960

Preface

This specification uses three levels for indicating the degree of compliance necessary for specific functions, procedures, or coding. They are indicated by the use of key words as follows:

- Requirement: "Shall" indicates a required function, procedure, or coding necessary for compliance. The word "shall" used in text indicates a conditional requirement when the operation described is dependent on whether or not an objective or option is chosen.
- Objective: "Should" indicates an objective which is not required for compliance, but which is considered desirable.
- Option: "May" indicates an optional operation without implying a desirability of one operation over another. That is, it identifies an operation that is allowed while still maintaining compliance.

Table of contents

1 Introduction 1
2 Transmission Convergence (TC) Sublayer 1
2.1 Physical layer cells 1
2.2 Transmitter operation 1
2.2.1 Cell rate decoupling 1
2.2.2 Insertion of F3 OAM cells 2
2.2.3 Scrambling 2
2.2.4 HEC generation. 3
2.2.5 Order of transmission of cells 3
2.3 Receiver operation 3
2.3.1 Cell delineation 3
2.3.2 HEC verification 4
2.3.3 Descrambling4
2.3.4 Extraction of physical layer cells 6
2.4 OAM functionality 6
2.4.1 Maintenance signals 6
2.4.2 Transmission performance monitoring 7
2.4.3 Allocation of OAM functions in information field 7
3 Physical Medium Dependent (PMD) Sublayer 9
3.1 Coding sublayer. 9
3.1.1 Data characters 9
3.1.2 Special characters 9
3.1.3 Comma 9
3.1.4 10-bit character 10
3.1.5 Disparity calculation 12
3.2 Ten bit interface (TBI) 13
3.2.1 Signals. 13
3.2.2 Electrical characteristics 14
3.3 Synchronization 14
3.4 Loss of synchronization 16
3.5 Media dependent sublayer 16
3.5.1 Single-mode or multi-mode fiber 16
3.5.2 Twisted pair copper cable 16
4 Acronym List 17
5 Normative References 17
APPENDIX I Distributed Sample Descrambler Implementation Example 18
APPENDIX II Test Patterns 20

List of figures

Figure 1 : Cell delineation state diagram 3
Figure 2 : Definition of the monitored block boundaries 8
Figure 3 : Receiver synchronization state diagram 15
Figure 4 : Transmitter synchronization state diagram 15
Figure I-1 : Example of descrambler implementation 19
Figure II-1 : Scrambling operation and scrambler initial state 21

List of tables

Table 1: Header pattern for idle cell identification 1
Table 2 : Header pattern for F3 OAM cell identification 1
Table 3 : PRBS phase (as added to payload and all header except HEC) 3
Table 4 : Resultant transmitted data element 3
Table 5 : Allocation of OAM functions in information field 7
Table 6 : Coding of TP-RDI defect information 8
Table 7 : 10-bit data characters 10
Table 8 : 10-bit special characters 12
Table 9 : Signal definitions 13
Table 10 : Electrical characteristics 14
Table II-1 : HEC field 22
Table II-2 : Final HEC field 22
Table II-3 : Descrambler state 23

1 Introduction

Cell-Based Physical Layer specification provides the necessary functions to transport ATM cells directly on the physical media without using any frame structure. The functions of the full duplex physical layer (U-plane) are grouped into the Transmission Convergence (TC) sublayer (covered in section 2) and the Physical Media Dependent (PMD) sublayer (covered in section 3).

The Transmission Convergence sublayer is bit rate independent as it requires no frame structure. Due to the cellbased structure of the Transmission Convergence sublayer, transport capability of $997.685 \mathrm{Mbit} / \mathrm{s}$ is available at the ATM layer.

This specification also provides the OAM functions residing in the physical layer management (M-plane).

2 Transmission Convergence (TC) Sublayer

2.1 Physical layer cells

Physical Layer Cells include Physical Layer F3 OAM cells and idle cells. Physical Layer F3 OAM cells are used for operation and maintenance at the Transmission Path level. Idle cells are used for cell rate decoupling.
(R1) The first four octets of an idle cell header shall be as shown in Table 1. The cell payload content of an idle cell shall be " 01101010 " repeated 48 times. These values are given prior to scrambling.

Table 1 : Header pattern for idle cell identification

	Octet 1	Octet 2	Octet 3	Octet 4
Header Pattern	00000000	00000000	00000000	00000001

(R2) The first four octets of a Physical Layer F3 OAM cell shall be as shown in Table 2. The cell payload content of a Physical Layer F3 OAM cell shall be as indicated in subsection 2.4.3. These values are given prior to scrambling.

Table 2 : Header pattern for F3 OAM cell identification

	Octet 1	Octet 2	Octet 3	Octet 4
Header Pattern	00000000	00000000	00000000	00001001

2.2 Transmitter operation

2.2.1 Cell rate decoupling

(R3) The interface structure shall consist of a continuous stream of cells. Each cell contains 53 octets.
(R4) When there is no F3 OAM cell or ATM Layer cell to transmit, the physical layer shall insert idle cells for cell rate decoupling. Idle cells format is defined in subsection 2.1.

Note that the ATM layer can insert unassigned cells to perform cell rate decoupling. Unassigned cells are defined in ITU-T I. 361 [3] and are part of the ATM layer cells. However, insertion of unassigned cells for cell rate decoupling is not required as this function is done at the physical layer by inserting idle cells.

2.2.2 Insertion of F3 OAM cells

(R5) One F3 OAM cell shall be inserted every 431 contiguous cells. F3 OAM cell insertion shall be done prior to any other cell.

The resulting cell stream consists in one F3 OAM cell followed by 431 contiguous cells (ATM layer cells or idle cells) and then another F3 OAM cell. The overhead induced by F3 OAM cell insertion is $1 / 432$. The resulting interface transport capability is $997.685 \mathrm{Mbit} / \mathrm{s}$.

2.2.3 Scrambling

Scrambling is used to improve the security and robustness of the HEC cell delineation mechanism as described in subsection 2.3.1. In addition it helps randomising the data in the information field for improvement of the transmission performance.
(R6) All the cells shall be scrambled by using the DSS (Distributed Sample Scrambler). The DSS shall scramble both the payload and the header (except the HEC field) of each cell.

The Distributed Sample Scrambler (DSS) is an additive Pseudo Random Binary Sequence (PRBS) scrambler that does not introduce error multiplication, and is of sufficiently high performance that an underlying PMD sublayer can rely on it to provide a high degree of randomisation. De-scrambling at the receiver is achieved by modulo addition of an identical locally generated pseudo random sequence having phase synchronisation with the first in respect of the transmitted cells. The scrambler does not affect the performance of the 8 bit HEC mechanism during Steady state operation.

Phase synchronisation of a receiver PRBS with polynomial generator order r is achieved by sending r linearly independent source PRBS samples through the transmission channel as conveyed data samples. When received without error these r samples are sufficient to synchronise the phase of the PRBS generator at the receiver to that of the transmitter PRBS generator.

A simple timing skew between the source PRBS samples and the conveyed PRBS samples serves as a means of decoupling the sample times of the source PRBS samples from the conveyed PRBS samples. This enables linear independence of PRBS samples to be simply achieved by taking samples at equal intervals of half an ATM cell (212 bits) from the source PRBS generator.
(R7) The transmitter pseudo random binary sequence shall be added (modulo 2) to the complete cell bit by bit excepting the HEC field. The pseudo random sequence polynomial shall be $x^{31}+x^{28}+1$.
(R8) The CRC octet for each cell shall then be modified by modulo 2 addition of the CRC calculated on the 32 bits of the scrambler sequence co-incident with the first 32 header bits. This is equivalent to calculation of the CRC on the first 32 bits of the scrambled header.

The first two bits of the HEC field are then modified as follows by two bits from the PRBS generator. The two bits from the PRBS generator will be referred to as the PRBS source bits and the two bits of the CRC onto which they are mapped will be referred to as the PRBS transport bits.
(R9) To the first HEC bit (HEC8) it shall be added (modulo 2) the value of PRBS generator that was added (modulo 2) 211 bits earlier to the previous cell payload (Ut -211). To the second bit of the HEC field it shall be added (modulo 2) the current value of the PRBS generator ($\mathrm{Ut}+1$). These samples are exactly half a cell apart (212 bits) and the first ($\mathrm{U}_{\mathrm{t}}-211$) is delayed by 211 bits before conveyance (requiring one D-type latch for storage) (211 bits is 1 bit less than half a cell).

Table 3 : PRBS phase (as added to payload and all header except HEC)

$\mathrm{Ut}-1$	Ut	$\mathrm{Ut}+1$	$\mathrm{Ut}+2$	$\mathrm{Ut}+3$	$\mathrm{Ut}+4$	$\mathrm{Ut}+5$	$\mathrm{Ut}+6$	$\mathrm{Ut}+7$	$\mathrm{Ut}+8$	$\mathrm{Ut}+9$

Table 4 : Resultant transmitted data element

CLP +	HEC8 + $\mathrm{Ut}-1$	HEC7 + $\mathrm{Ut}-211$	HEC6	HEC5	HEC4	HEC3	HEC2	HEC1	1st pay_bit + $\mathrm{Ut}+8$	2nd pay_bit + $\mathrm{Ut}+9$

2.2.4 HEC generation

(R10) The HEC byte shall be generated as specified in Recommendation ITU-T I.432.1 [1] subsection 4.3.2.2. This shall include the recommended modulo 2 addition of the pattern "01010101" (55 hex) to the HEC bits.

2.2.5 Order of transmission of cells

(R11) Each cell shall be transmitted starting from the first byte of the cell header to the last byte of the cell payload (bytes are sent in increasing order).

2.3 Receiver operation

2.3.1 Cell delineation

Cell delineation is performed by using the correlation between the header bits to be protected (32 bits) and the relevant control bits (8 bits) introduced in the header by the HEC using a shortened cyclic code with generating polynomial $x^{8}+x^{2}+x+1$. Figure 1 shows the state diagram of the HEC cell delineation method.

Figure 1 : Cell delineation state diagram
(R12) In the HUNT state, the delineation process is performed by checking octet by octet for the correct HEC (i.e. syndrome equals zero) for the assumed header field. Prior to scrambler synchronisation, only the last six bits of the HEC are to be used for cell delineation checking. Once such an agreement is found, it is assumed that one header has been found, and the process enters the PRESYNC state.
(R13) In the PRESYNC state, the delineation process is performed by checking cell by cell for the correct HEC. Prior to scrambler synchronisation, only the last six bits of the HEC are to be used for cell delineation checking. The process repeats until the correct HEC has been confirmed DELTA times consecutively, at
which point the process moves to the SYNC state. If an incorrect HEC is found, the process returns to the HUNT state. The total number of consecutive correct HEC required to move from the HUNT state to the SYNC state is therefore DELTA +1 .
(R14) In the SYNC state the cell delineation will be assumed to be lost if an incorrect HEC is obtained ALPHA times consecutively.
(R15) Cells with correct HEC shall be passed to the ATM layer when the cell delineation process is in SYNC state and the descrambler is in Steady state operation. In any case, idle cells and Physical Layer OAM cells shall not be passed to the ATM layer.
(R16) The value of ALPHA shall be equal to 7 . The value of DELTA shall be equal to 8 .

2.3.2 HEC verification

(R17) HEC sequence error detection shall be performed as specified in Recommendation ITU-T I.432.1 [1] subsection 4.3.2.1. This shall include only error detection as single bit error correction is not applicable due to the error multiplication introduced by the 8B10B coding performed in the PMD sublayer.

2.3.3 Descrambling

Three basic states of descrambler operation are defined :
(I) Acquisition of scrambler synchronisation
(II) Verification of descrambler synchronisation
(III) Steady state operation

The transition between these three states is based on the value of a confidence counter (C).

Receiver state (I): Acquisition of scrambler synchronisation
(R18) The descrambler shall enter this state at start-up and each time the cell delineation process enters the HUNT state. When entering this state the confidence counter shall be reset to $0(\mathrm{C}=0)$.

Cell delineation:

The cell delineation mechanism is independent of the descrambler synchronisation mechanism. However while the descrambler is in Acquisition or Verification states, the cell delineation is determined by using only the last six bits of the HEC field. This is because the first two bits of the HEC field have been modified by the modulo 2 addition of the conveyed data samples and cannot therefore be used in delineation or HEC evaluation until the descrambler is synchronised (Steady state operation).

Acquisition of scrambler synchronisation:
(R19) In Acquisition state, the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ shall be extracted from the bit stream by modulo 2 addition of the predicted values for HEC_{8} and HEC_{7} to the received values. The predicted values correspond to bits HEC_{8} and HEC_{7} of the HEC value calculated over the first four bytes of the received header.
 As the degree of the scrambler polynomial is equal to 31 , the number of consecutive error free conveyed samples needed to synchronise the descrambler is equal to 31 (16 cells).

Descrambler synchronisation may be achieved by comparing, every 212 bits, the received sample bit to the corresponding bit locally generated by the descrambler (Figure I-1). If these two bits are not identical a constant correction vector is applied to the descrambler through feedforward taps. At time t, the sample conveyed in HEC_{8}
 $\operatorname{HEC}_{7}\left(\mathrm{U}_{\mathrm{t}+1}\right)$ is compared to the descrambler bit V_{t+1} generated at time $\mathrm{t}+1$ (both $\mathrm{U}_{\mathrm{t}+1}$ and $\mathrm{V}_{\mathrm{t}+1}$ have been stored during 211 bits before being compared). Because both conveyed samples are compared to the corresponding descrambler bits 211 bits behind their point of modulo addition to the transmitted data sequence, the recursive descrambler feedforward taps are chosen to generate a sequence that is advanced by 211 samples (Figure I-1).
(R21) For every cell received correctly with no errors detected in HEC bits 1 to 6 the confidence counter shall increment $(\mathrm{C}=\mathrm{C}+1)$. Any error detected in HEC bits 1 to 6 results in a return to the initial state $(\mathrm{C}=0)$. When the confidence counter reaches the value of 16 the descrambler process shall enter the Verification state.

Time to achieve scrambler synchronisation:
Two bit samples are conveyed per cell, which are linearly independent. The number of consecutive error free conveyed samples needed to synchronise the descrambler is equal to the degree of the scrambler polynomial, therefore 16 cells provide the 31 samples necessary to synchronise the descrambler.

The descrambler synchronisation process is not disabled during cell delineation, however the descrambler will not begin to converge until the cell delineation mechanism has located the true position of the HEC field in the header and is no longer in its HUNT state. Therefore the start of descrambler synchronisation acquisition convergence will be coincident with the final transition from the HUNT state to the PRESYNC state of the cell delineation mechanism.

Receiver state (II): Verification of descrambler synchronisation

The Verification state differs from the Acquisition state in that the recursive descrambler is assumed to be synchronised and is no longer modified with synchronising samples. Verification is needed because errors undetectable by the 6 bits HEC check may have occurred in the conveyed bits during the Acquisition state (resulting in incorrect descrambler synchronisation). The verification phase tests the predicted PRBS generated locally by the descrambler against the remote reference sequence given by the conveyed samples. To verify descrambler Acquisition phase overall such that the probability of false descrambler synchronisation is less than 10^{-6} requires 16 verifications (8 cells) where the transmission ratio is better than 10^{-3}.
(R22) In Verification state, the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ shall be extracted from the bit stream by modulo 2 addition of the predicted values for HEC_{8} and HEC_{7} to the received values. The predicted values correspond to bits HEC_{8} and HEC_{7} of the HEC value calculated over the first four bytes of the received header.
(R23) For each cell received without detected errors in HEC bits 1 to 6, the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ shall be compared to the corresponding PRBS bits generated locally by the descrambler $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$. For each cell with two correct predictions received, the confidence counter shall increment $(\mathrm{C}=\mathrm{C}+1)$. If one or two incorrect predictions are made then the confidence counter shall decrement $(\mathrm{C}=\mathrm{C}-1)$.
(R24) If the confidence counter falls below the value of 8, the descrambler process shall return to the Acquisition state and the confidence counter is reset $(\mathrm{C}=0)$.
(R25) When the confidence counter reaches the value of 24, the descrambler process shall enter the Steady state operation.

Receiver state (III): Steady state operation (synchronised scrambler)

In this state the HEC_{8} and HEC_{7} bits can both be returned to normal use following their descrambling by using the bits generated locally $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$. Properties of error detection and correction are not affected by this process. Both cell delineation and descrambler synchronisation robustness to channel bit-slip are reliably monitored in this state by the existing cell delineation state machine.
(R26) In this state, the two PRBS bits generated locally by the descrambler shall be used to extract the two conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ by modulo addition. Therefore bits HEC_{8} and HEC_{7} can both be returned to normal use. Properties of error detection and correction are not affected by this process.
(R27) When the cell delineation process detects a non-zero syndrome with error bits confined to bits HEC_{8} and HEC_{7} the confidence counter shall decrement $(\mathrm{C}=\mathrm{C}-1)$, else it shall increment $(\mathrm{C}=\mathrm{C}+1)$. The confidence counter shall have an upper limit of 24 .
(R28) If the confidence counter falls below the value of 16 or if the cell delineation process returns to the HUNT state, the descrambler process shall return to the Acquisition state.

2.3.4 Extraction of physical layer cells

(R29) Idle cells shall be extracted, as these cells shall not be passed to the ATM layer.
(R30) Physical Layer F3 OAM cells shall be extracted for maintenance and performance monitoring functions. These cells shall not be passed to the ATM layer.

2.4 OAM functionality

2.4.1 Maintenance signals

(R31) Transmission Path Remote Defect Indication (TP-RDI) shall be provided to alert the upstream equipment in the opposite direction of transmission that a defect has been detected along the downstream path. It shall be set when a Loss Of Cell Delineation (LCD), Loss of Maintenance flow (LOM), or Loss of Signal (LOS) has been detected at the path level. The time to set this signal must be as short as possible but long enough to filter intermittent defect information. The coding of this field is defined in subsection 2.4.3.

Description of defects:
Loss of Signal (LOS) - LOS is considered to have occurred when the amplitude of the relevant signal has dropped below prescribed limits for a prescribed period.

Out of Cell Delineation (OCD) - An OCD anomaly occurs when the cell delineation process changes from SYNC state to HUNT state while in a working state (refer to Figure 1). An OCD anomaly terminates when the PRESYNC to SYNC state transition occurs (refer to Figure 1) or when the OCD anomaly persists and the LCD maintenance state is entered (see below).

Loss of Cell Delineation (LCD) - An LCD defect occurs when an OCD anomaly (see above) has persisted for x ms. An LCD defect terminates when the cell delineation process (refer to Figure 1) enters the SYNC state. The value of x shall be in the range 1 to 4 .

Loss of Maintenance (LOM) - Loss of one F3 OAM cell is detected when no F3 OAM cell is received 431 cells after the last received F3 OAM cell. LOM defect is declared when two successive anomalies (loss of one F3 OAM cell) are detected.

2.4.2 Transmission performance monitoring

Transmission performance monitoring is performed to detect and report transmission errors. At the Transmission Path level, this function is achieved by using Physical Layer F3 OAM cells.

Physical Layer F3 OAM cells are inserted on a recurrent basis (every 431 cells) in the cell flow. Each F3 OAM cell monitors 8 logic blocks of 54 cells each. For each monitored block, performance monitoring is achieved by checking the BIP-8 value. The BIP-8 calculation is performed only on the cell payload because the cell header is already monitored by the HEC field.

Upon reception of one F3 OAM cell, the receiver determines the number of BIP-8 violation in each monitored block. The performance is then calculated according to anomalies a1 to a4 defined in Recommendation ITU-T G. 826 Annex D [4]. The total number of error blocks detected in one direction between two consecutive F3 OAM cells is sent in the opposite direction of transmission by using the REB field (subsection 2.4.3). Therefore both the transmitter and the receiver have the same view of the performance measured in one particular direction of transmission.

2.4.3 Allocation of OAM functions in information field

(R32) F3 OAM cell payload shall be allocated as defined in Table 5.
Table 5 : Allocation of OAM functions in information field

1	R	25	R
2	R	26	R
3	PSN	27	R
4	R	28	R
5	R	29	R
6	R	30	RDI
7	R	31	R
8	EDC-B1	32	R
9	EDC-B2	33	R
10	EDC-B3	34	R
11	EDC-B4	35	R
12	EDC-B5	36	R
13	EDC-B6	37	R
14	EDC-B7	38	R
15	EDC-B8	39	R
16	R	40	R
17	R	41	R
18	R	42	R
19	R	43	R
20	R	44	R
21	R	45	R
22	R	46	REB
23	R	47	CEC (2) Note 1
24	R	48	CEC (8) Note 1

Note 1: MSB is bit 2 of byte 47 and LSB is bit 1 of byte 48 .
Bits 3 to 8 of byte 47 are set to 0 .
(R33) PL-OAM Sequence Number (PSN): this field shall be used to number the F3 OAM cells. It is designed to have a sufficiently large cycle compared with the duration of cell loss and insertion. 8 bits are allocated to PSN. The counting is then done modulo 256. This field shall be incremented by one at each new F3 OAM cell being sent.
(R34) Error detection code (EDC): this code shall be a BIP-8 calculated on a block of 54 cells repeated for each monitored block. The number of monitored blocks is equal to 8 . The field EDC-Bn shall correspond to the BIP-8 calculated on the monitored block number n. For F3 OAM cell number n, the first monitored block
shall begin with the first cell following the F3 OAM cell number n-1. The last monitored block shall end at the end of the F3 OAM cell number n, as indicated in Figure 2.

Figure 2 : Definition of the monitored block boundaries
F3 OAM cells shall not be taken into account by the BIP-8 calculation. This means the BIP-8 calculation shall be stopped during F3 OAM cells. For the other cells (ATM layer cells and idle cells) the BIP- 8 shall be calculated only on the cell payload before the scrambling is performed.

One octet is allocated for each EDC-Bn field. Each bit of the EDC-Bn field shall be equal to the BIP calculated on the same range bits of each monitored octet (i.e. the Most Significant Bit of each EDC-Bn octet shall be equal to the BIP calculated on the Most Significant Bit of each octet of the monitored block).
(R35) Remote Error Blocks (REB): This field shall indicate to the far end direction the total number of error blocks between two consecutive F3 OAM cells in accordance with anomalies a1 to a4 defined in Annex D of ITU-T Recommendation G. 826 [4]. The REB field shall be the value of a running counter (modulo 256) increased periodically by the number of error blocks detected in one direction of transmission (in accordance with G. 826 Annex D). The value of this running counter shall be put in the REB field of each F3 OAM cell being sent in the opposite direction. By subtracting the values contained in the REB fields of two consecutively received valid F3 OAM cells (i.e. CEC field indicates a valid cell payload), the receiving system knows the total number of error blocks measured by the far end system.
(R36) Transmission Path Remote Defect Indication (TP-RDI): This field shall be used to alert the upstream equipment in the opposite direction of transmission that a defect has been detected along the downstream path. The possible defects are LOM, LCD, and LOS. The coding of this field shall be as indicated in Table 6.

Table 6 : Coding of TP-RDI defect information
MSB

	LSB						
0	0	0	0	LOM	LCD	LOS	RDI_indication

When a defect is detected (LOM, LCD, or LOS), the corresponding bit shall be set to 1 , else it shall remain 0 . When at least one defect is detected, the RDI_indication bit shall be set to 1 , else it shall remain 0 .
(R37) Cell Error Control (CEC) is used to detect errors in the cell payload. A CRC 10 shall be used (it should be the same as in the F4/F5 flows). When the CEC value indicates an invalid payload the F3 OAM cell is considered in error and an anomaly is raised (refer to Recommendation ITU-T G. 826 [4]). Similarly when the HEC value indicates an invalid header the F3 OAM cell is also considered in error and an anomaly is raised (refer to [4]).
(R38) Reserved Field (R) shall contain the octet pattern of " 01101010 " (6A hex), which is the same as that of the idle cells.

3. Physical Medium Dependent (PMD) Sublayer

Physical layer cells are transferred between the Transmission Convergence (TC) sublayer (described in section 2) and the ATM Physical Median Dependent (PMD) sublayer covered in this section. The ATM full duplex PMD sublayer is divided into a coding sublayer, which is media independent, and a media dependent Ten Bit Interface PMD (TBI PMD) sublayer. The currently supported TBI PMD's are specified in subsection 3.5. Link synchronization and loss of synchronization are also specified in the coding sublayer.

3.1 Coding sublayer

(R39) Physical layer cells transferred between the coding sublayer and the TBI PMD sublayer shall be encoded (or decoded) eight bits at a time into 10-bit data characters.

In addition some of the remaining 10 -bit characters are used to represent special characters for control, Kx.y, defined in Table 8. The coding sublayer will use two of the special characters for synchronization and the start of data transmission. Other uses for the characters can be found in 802.3 IEEE Standard, 2000 edition [8] and TR/X3.181997 ANSI Technical Report [9].

3.1.1 Data characters

Encoding or decoding of valid 10-bit data or special characters will use a running disparity (RD) calculation to determine the correct character from two possible choices. The two choices given in Tables 7 and 8, correspond to the current value of the running disparity. Running disparity is a binary value with either a negative value (-) or positive value (+).
(R40) The coding sublayer shall maintain a running disparity calculation to generate the correct transmitted and received 10-bit data or special characters. Subsection 3.1 .5 specifies the rules for running disparity calculation. Additional information may be found in 802.3 IEEE Standard, 2000 edition [8] and TR/X3.181997 ANSI Technical Report [9]. Decoding violations during data reception, a received 10-bit data character with an incorrect disparity, shall be passed on as decoded to the TC sublayer. A decoded character that is not defined in Table 7 received during normal data reception by the PMD shall be passed on to the TC sublayer as hex FF.

3.1.2 Special characters

(R41) A special character followed by a data character shall define a code group, K28.5/D5.6 and K28.5/D16.2, used for link synchronization. The special character K28.5 shall always be transmitted on even boundaries (characters $0,2,4$, etc.) in the character stream. The coding sublayer shall continuously transmit data or special characters to the TBI PMD. The start of data transmission shall be indicated by the transmission or reception of the K27.7 special character.

Auto-negotiation or use of other special characters for configuration and control is not specified and beyond the scope of this specification. Decoded characters during synchronization should not be transmitted to the TC sublayer.

3.1.3 Comma

In a 10 -bit character the seven bit string " 0011111 " is defined as a comma+ and " 1100000 " as a comma-. The comma in K28.5 is a singular bit pattern and cannot appear in any other location of a code group in the absence of errors and cannot be generated across the boundaries of any two adjacent code groups used in this specification. See 802.3 IEEE Standard, 2000 edition [8] and TR/X3.18-1997 ANSI Technical Report [9] for other circumstances. The comma is used to obtain character and code group alignment.

3.1.4 10-bit character

(R42) Table 7 specifies the coding of the eight bits of data and 10-bit data characters for the current negative or positive running disparity, RD- and RD+. Table 8 specifies the coding of the 10 -bit special characters. Only K28.5 and K27.7 are used in this specification.

Table 7 : 10-bit data characters

$\begin{gathered} \mathrm{D}[0: 31, \\ 0: 7] \end{gathered}$	Data Eight Bit Value	Current RD-	Current RD+	$\begin{gathered} \mathrm{D}[0: 31, \\ 0: 7] \end{gathered}$	Data Eight Bit Value	$\begin{gathered} \hline \text { Current RD- } \\ \hline \text { abcdei fghj } \end{gathered}$	$\begin{gathered} \hline \text { Current RD+ } \\ \hline \text { abcdei fghj } \end{gathered}$
		abcdei fghj	abcdei fghj				
D0.0	00000000	1001110100	0110001011	D0.1	00100000	1001111001	0110001001
D1.0	00000001	0111010100	1000101011	D1.1	00100001	0111011001	1000101001
D2.0	00000010	1011010100	0100101011	D2.1	00100010	1011011001	0100101001
D3.0	00000011	1100011011	1100010100	D3.1	00100011	1100011001	1100011001
D4.0	00000100	1101010100	0010101011	D4.1	00100100	1101011001	0010101001
D5.0	00000101	1010011011	1010010100	D5.1	00100101	1010011001	1010011001
D6.0	00000110	0110011011	0110010100	D6.1	00100110	0110011001	0110011001
D7.0	00000111	1110001011	0001110100	D7.1	00100111	1110001001	0001111001
D8.0	00001000	1110010100	0001101011	D8.1	00101000	1110011001	0001101001
D9.0	00001001	1001011011	1001010100	D9.1	00101001	1001011001	1001011001
D10.0	00001010	0101011011	1001010100	D10.1	00101010	0101011001	0101011001
D11.0	00001011	1101001011	1101000100	D11.1	00101011	1101001001	1101001001
D12.0	00001100	0011011011	0011010100	D12.1	00101100	0011011001	0011011001
D13.0	00001101	1011001011	1011000100	D13.1	00101101	1011001001	1011001001
D14.0	00001110	0111001011	0111000100	D14.1	00101110	0111001001	0111001001
D15.0	00001111	0101110100	1010001011	D15.1	00101111	0101111001	1010001001
D16.0	00010000	0110110100	1001001011	D16.1	00110000	0110111001	1001001001
D17.0	00010001	1000111011	1000110100	D17.1	00110001	1000111001	1000111001
D18.0	00010010	0100111011	0100110100	D18.1	00110010	0100111001	0100111001
D19.0	00010011	1100101011	1100100100	D19.1	00110011	1100101001	1100101001
D20.0	00010100	0010111011	0010110100	D20.1	00110100	0010111001	0010111001
D21.0	00010101	1010101011	1010100100	D21.1	00110101	1010101001	1010101001
D22.0	00010110	0110101011	0110100100	D22.1	00110110	0110101001	0110101001
D23.0	00010111	1110100100	0001011011	D23.1	00110111	1110101001	0001011001
D24.0	00011000	1100110100	0011001011	D24.1	00111000	1100111001	0011001001
D25.0	00011001	1001101011	1001100100	D25.1	00111001	1001101001	1001101001
D26.0	00011010	0101101011	0101100100	D26.1	00111010	0101101001	0101101001
D27.0	00011011	1101100100	0010011011	D27.1	00111011	1101101001	0010011001
D28.0	00011100	0011101011	0011100100	D28.1	00111100	0011101001	0010011001
D29.0	00011101	1011100100	0100011011	D29.1	00111101	1011101001	0100011001
D30.0	00011110	0111100100	1000011011	D30.1	00111110	0111101001	1000011001
D31.0	00011111	1010110100	0101001011	D31.1	00111111	1010111001	0101001001
D0.2	01000000	1001110101	0110000101	D0.3	01100000	1001110011	0110001100
D1.2	01000001	0111010101	1000100101	D1.3	01100001	0111010011	1000101100
D2.2	01000010	1011010101	0100100101	D2.3	01100010	1011010011	0100101100
D3.2	01000101	1100010101	1100010101	D3.3	01100011	1100011100	1100010011
D4.2	01000111	1101010101	0010100101	D4.3	01100100	1101010011	0010101100
D5.2	01001001	1010010101	1010010101	D5.3	01100101	1010011100	1010010011
D6.2	01001011	0110010101	0110010101	D6.3	01100110	0110011100	0110010011
D7.2	01001100	1110000101	0001110101	D7.3	01100111	1110001100	0001110011
D8.2	01001111	1110010101	0001100101	D8.3	01101000	1110010011	0001101100
D9.2	01010001	1001010101	1001010101	D9.3	01101001	1001011100	1001010011
D10.2	01001010	0101010101	0101010101	D10.3	01101010	0101011100	0101010011
D11.2	01001011	1101000101	1101000101	D11.3	01101011	1101001100	1101000011
D12.2	01001100	0011010101	0011010101	D12.3	01101100	0011011100	0011010011
D13.2	01001101	1011000101	1011000101	D13.3	01101101	1011001100	1011000011
D14.2	01001110	0111000101	0111000101	D14.3	01101110	0111001100	0111000011
D15.2	01001111	0101110101	1010000101	D15.3	01101111	0101110011	1010001100
D16.2	01010000	0110110101	1001000101	D16.3	01110000	0110110011	1001001100
D17.2	01010001	1000110101	1000110101	D17.3	01110001	1000111100	1000110011
D18.2	01010010	0100110101	0100110101	D18.3	01110010	0100111100	0100110011
D19.2	01010011	1100100101	1100100101	D19.3	01110011	1100101100	1100100011
D20.2	01010100	0010110101	0010110101	D20.3	01110100	0010111100	0010110011

D21.2	01010101	1010100101	1010100101	D21.3	01110101	1010101100	1010100011
D22.2	01010110	0110100101	0110100101	D22.3	01110110	0110101100	0110100011
D23.2	01010111	1110100101	0001010101	D23.3	01110111	1110100011	0001011100
D24.2	01011000	1100110101	0011000101	D24.3	01111000	1100110011	0011001100
D25.2	01011001	1001100101	1001100101	D25.3	01111001	1001101100	1001100011
D26.2	01011010	0101100101	0101100101	D26.3	01111010	0101101100	0101100011
D27.2	01011011	1101100101	0010010101	D27.3	01111011	1101100011	0010011100
D28.2	01011100	0011100101	0011100101	D28.3	01111100	0011101100	0011100011
D29.2	01011101	1011100101	0100010101	D29.3	01111101	1011100011	0100011100
D30.2	01011110	0111100101	1000010101	D30.3	01111110	0111100011	1000011100
D31.2	01011111	1010110101	0101000101	D31.3	01111111	1010110011	0101001100
D0.4	10000000	1001110010	0110001101	D0.5	10100000	1001111010	0110001010
D1.4	10000001	0111010010	1000101101	D1.5	10100001	0111011010	1000101010
D2.4	10000010	1011010010	0100101101	D2.5	10100010	1011011010	0100101010
D3.4	10000011	1100011101	1100010010	D3.5	10100011	1100011010	1100011010
D4.4	10000100	1101010010	0010101101	D4.5	10100100	1101011010	0010101010
D5.4	10000101	1010011101	1010010010	D5.5	10100101	1010011010	1010011010
D6.4	10000110	0110011101	0110010010	D6.5	10100110	0110011010	0110011010
D7.4	10000111	1110001101	0001110010	D7.5	10100111	1110001010	0001111010
D8.4	10001000	1110010010	0001101101	D8.5	10101000	1110011010	0001101010
D9.4	10001001	1001011101	1001010010	D9.5	10101001	1001011010	1001011010
D10.4	10001010	0101011101	0101010010	D10.5	10101010	0101011010	0101011010
D11.4	10001011	1101001101	1101000010	D11.5	10101011	1101001010	1101001010
D12.4	10001100	0011011101	0011010010	D12.5	10101100	0011011010	0011011010
D13.4	10001101	1011001101	1011000010	D13.5	10101101	1011001010	1011001010
D14.4	10001110	0111001101	0111000010	D14.5	10101110	0111001010	0111001010
D15.4	10001111	0101110010	1010001101	D15.5	10101111	0101111010	1010001010
D16.4	10010000	0110110010	1001001101	D16.5	10110000	0110111010	1001001010
D17.4	10010001	1000111101	1000110010	D17.5	10110001	1000111010	1000111010
D18.4	10010010	0100111101	0100110010	D18.5	10110010	0100111010	0100111010
D19.4	10010011	1100101101	1100100010	D19.5	10110011	1100101010	1100101010
D20.4	10010100	0010111101	0010110010	D20.5	10110100	0010111010	0010111010
D21.4	10010101	1010101101	1010100010	D21.5	10110101	1010101010	1010101010
D22.4	10010110	0110101101	0110100010	D22.5	10110110	0110101010	0110101010
D23.4	10010111	1110100010	0001011101	D23.5	10110111	1110101010	0001011010
D24.4	10011000	1100110010	0011001101	D24.5	10111000	1100111010	0011001010
D25.4	10011001	1001101101	1001100010	D25.5	10111001	1001101010	1001101010
D26.4	10011010	0101101101	0101100010	D26.5	10111010	0101101010	0101101010
D27.4	10011011	1101100010	0010011101	D27.5	10111011	1101101010	0010011010
D28.4	10011100	0011101101	0011100010	D28.5	10111100	0011101010	0011101010
D29.4	10011101	1011100010	0100011101	D29.5	10111101	1011101010	0100011010
D30.4	10011110	0111100010	1000011101	D30.5	10111110	0111101010	1000011010
D31.4	10011111	1010110010	0101001101	D31.5	10111111	1010111010	0101001010
D0.6	11000000	1001110110	0110000110	D0.7	11100000	1001110001	0110001110
D1.6	11000001	0111010110	1000100110	D1.7	11100001	0111010001	1000101110
D2.6	11000010	1011010110	0100100110	D2.7	11100010	1011010001	0100101110
D3.6	11000011	1100010110	1100010110	D3.7	11100011	1100011110	1100010001
D4.6	11000100	1101010110	0010100110	D4.7	11100100	1101010001	0010101110
D5.6	11000101	1010010110	1010010110	D5.7	11100101	1010011110	1010010001
D6.6	11000110	0110010110	0110010110	D6.7	11100110	0110011110	0110010001
D7.6	11000111	1110000110	0001110110	D7.7	11100111	1110001110	0001110001
D8.6	11001000	1110010110	0001100110	D8.7	11101000	1110010001	0001101110
D9.6	11001001	1001010110	1001010110	D9.7	11101001	1001011110	1001010001
D10.6	11001010	0101010110	0101010110	D10.7	11101010	0101011110	0101010001
D11.6	11001011	1101000110	1101000110	D11.7	11101011	1101001110	1101001000
D12.6	11001100	0011010110	0011010110	D12.7	11101100	0011011110	0011010001
D13.6	11001101	1011000110	1011000110	D13.7	11101101	1011001110	1011001000
D14.6	11001110	0111000110	0111000110	D14.7	11101110	0111001110	0111001000
D15.6	11001111	0101110110	1010000110	D15.7	11101111	0101110001	1010001110
D16.6	11010000	0110110110	1001000110	D16.7	11110000	0110110001	1001001110
D17.6	11010001	1000110110	1000110110	D17.7	11110001	1000110111	1000110001
D18.6	11010010	0100110110	0100110110	D18.7	11110010	0100110111	0100110001

D19.6	11010011	1100100110	1100100110	D19.7	11110011	1100101110	1100100001
D20.6	11010100	0010110110	0010110110	D20.7	11110100	0010110111	0010110001
D21.6	11010101	1010100110	1010100110	D21.7	11110101	1010101110	1010100001
D22.6	11010110	0110100110	0110100110	D22.7	11110110	0110101110	0110100001
D23.6	11010111	1110100110	0001010110	D23.7	11110111	1110100001	0001011110
D24.6	11011000	1100110110	0011000110	D24.7	11111000	1100110001	0011001110
D25.6	11011001	1001100110	1001100110	D25.7	11111001	1001101110	1001100001
D26.6	11011010	0101100110	0101100110	D26.7	11111010	0101101110	0101100001
D27.6	11011011	1101100110	0010010110	D27.7	11111011	1101100001	0010011110
D28.6	11011100	0011100110	0011100110	D28.7	11111100	0011101110	0011100001
D29.6	11011101	1011100110	0100010110	D29.7	11111101	1011100001	0100011110
D30.6	11011110	0111100110	1000010110	D30.7	1111110	0111100001	1000011110
D31.6	11011111	1010110110	0101000110	D31.7	11111111	1010110001	0101001110

Table 8 : 10-bit special characters

Kx.y Special Character	Current RD-	Current RD+
	abcdei fghj	abcdei fghj
K28.0	0011110100	1100001011
K28.1	0011111001	1100000110
K28.2	0011110101	1100001010
K28.3	0011110011	1100001100
K28.4	0011110010	1100001101
K28.5	0011111010	1100000101
K28.6	0011110110	1100001001
K28.7	0011111000	1100000111
K23.7	1110101000	0001010111
K27.7	1101101000	0010010111
K29.7	1011101000	0100010111
K30.7	0111101000	1000010111

3.1.5 Disparity calculation

(R43) Running disparity of a character shall be calculated on the two sub-blocks, abcdei then fghj. Running disparity at the end of a sub-block is positive if the sub-block contains more ones than zeros or if abcdei is 000111 or fghj is 0011 . Running disparity shall be negative if the sub-block contains more zeros than ones or if abcdei is 111000 or fghj is 1100 . Otherwise running disparity shall be the same as at the beginning of the sub-block. The running disparity at the end of a character shall be the current running disparity used for the next character.

3.2 Ten bit interface (TBI)

The interface between the TC sublayer and coding sublayer is not intended as a separate physical interface or accessible. It is expected that the TBI may be implemented as a chip to chip interface from the coding sublayer to a TBI PMD. This would allow support for the different TBI PMD's defined in subsection 3.5.

3.2.1 Signals

The interface signals for the TBI PMD are defined in Table 9.
Table 9 : Signal definitions

Symbol	Signal Name	Signal Type	Active Level
TX[0:9]	Transmit Data	Input	H
TBC	Transmit Byte Clock	Input	\uparrow
EWRAP	Enable Wrap	Input	H
RX[0:9]	Receive Data	Output	H
RBC[0]	Receive Clock 0	Output	\uparrow
RBC[1]	Receive Clock 1	Output	\uparrow
COM_DET	Comma Detect	Output	H
LCK_REF	Lock to Reference	Input	L
REFCLK	Reference Clock	Input	\uparrow
EN_CDET	Enable Comma Detect	Input	H

TX[0:9] is the 10-bit parallel data interface to the TBI PMD. The bit TX[0] corresponds to " a " in the 10 -bit encoded character and is transmitted first in a serial transmission TBI PMD.

TBC is the 125 MHz transmit clock to the TBI PMD. This clock is used to latch the TX[0:9] into the TBI PMD. The TBC is frequency locked to any REFCLK.

EWRAP is used to wrap the TBI PMD transmit characters back to the input. Use of this function is not defined in this standard.
$\operatorname{RX}[0: 9]$ is the 10 -bit parallel data interface from the TBI PMD. The bit RX[0] corresponds to "a" in the $10-$ bit encoded character and is received first in a serial transmission TBI PMD.
$\mathrm{RBC}[0]$ is the 62.5 MHz receive clock from the TBI PMD and is used to receive odd characters (1, 3, etc.). This clock may be stretched during comma alignment.
$\operatorname{RBC}[1]$ is the 62.5 MHz receive clock from the TBI PMD and is used to receive even characters $(0,2$, etc.). $\operatorname{RBC}[1]$ is 180° out of phase with RBC[0]. This clock may be stretched during comma alignment.

COM_DET indicates that the data character associated with the current $\mathrm{RBC}[1]$ contains a valid comma.
LCK_REF causes the TBI PMD to lock its PLL to REFCLK. Use of this function is not defined in this standard but may be helpful in acquiring initial lock to the incoming bit stream.
(R44) REFCLK is a 125 MHz transmit reference clock. The frequency tolerance for this clock shall be +/100 ppm .

EN_CDET enables the TBI PMD to align the 10-bit field on a comma. The TBI PMD may delete one or more characters and stretch the receive clock in order to align the received comma with RBC[1].

3.2.2 Electrical characteristics

Table 10 defines the electrical characteristics for the TBI PMD.
Table 10 : Electrical characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
						V	
VOH	Output High Voltage	IOH = -400uA	VCC $=$ Min	2.2	3.0	VCC	V
VOL	Output Low Voltage	IOL $=1 \mathrm{~mA}$	VCC $=$ Min	GND	0.25	0.6	V
VIH	Input High Voltage			2.0	-	VCC $+10 \%$	V
VIL	Input Low Voltage			GND	-	0.8	V
IIH	Input High Current	VCC $=$ Max	VIN $=2.4 \mathrm{~V}$	-	-	40	uA
IIL	Input Low Current	VCC $=$ Max	VIN $=0.4 \mathrm{~V}$	-	-	-600	uA
Cin	Input Capacitance			-	-	4.0	pf
tr	Clock Rise Time	0.8 V to 2.0V		0.7	-	2.4	ns
tf	Clock Fall Time	2.0 V to 0.8V		0.7	-	2.4	ns
tr	Data Rise Time	0.8 V to 2.0 V		0.7	-	-	ns
tf	Data Fall Time	2.0 V to 0.8 V		0.7	-	-	ns

3.3 Synchronization

The PMD sublayer is divided into a local encoding-transmit and receive-decoding operation; representing a full duplex channel. These are synchronized with the equivalent remote upstream equipment on the channel. At the start of synchronization the received bit stream is aligned on a comma in the K28.5 character and a code group, K28.5/D5.6 (or K28.5/D16.2). Once the code group is aligned the code group K28.5/D16.2 is transmitted to notify the remote equipment. Receipt of this code group is used to indicate that physical layer cells can now be transmitted. The special character K27.7 is used to indicate the start of data character transmission. Synchronization for the receiver and transmitter follow two different state diagrams.

The receiver starts synchronization at power up, when a local Loss of Signal (LOS) $=1$ is indicated by the TC sublayer, a remote LOS $=1$ is received by the Transmission Path Remote Defect Indication (TP-RDI), or when a local Loss of Cell Delineation $(\mathrm{LCD})=1$ and is transmitted to the remote equipment by the TP-RDI. Once the receiver is aligned on a comma then the local LOS is set to 0 . Figure 3 illustrates the receiver synchronization.

The transmitter starts synchronization at power up, a local LOS $=1$, a remote $\operatorname{LOS}=1$, or remote $\mathrm{LCD}=1$ is received. If the LOS $=0$ and the remote status OK is true the transmitter would send a block of 47 octets and then return to normal transmission. Figure 4 illustrates the transmitter synchronization.
(R45) At power up, a local $\mathrm{LOS}=1$, a remote $\mathrm{LOS}=1$ is received, or local $\mathrm{LCD}=1$ and is transmitted to the remote equipment by the TP-RDI; the receiver shall set the remote status OK to not true and align the received bit stream on a comma to the leftmost bit positions of an even character (EN_CDET).
(R46) When the receiver has detected three successive commas in the leftmost bit positions of an even character (COM_DET), the LOS shall be set to a 0 , and the receiver shall assume an initial negative running disparity and begin decoding code groups.
(R47) On the receipt of a K28.5/D16.2 code group by the receiver with the correct disparity, the receiver shall set the remote status OK to true.
(R48) On the receipt of a K27.7 special character by the receiver, the receiver shall begin the reception of data characters.

Figure 3 : Receive synchronization state diagram
(R49) At power up, a local $\operatorname{LOS}=1$, a remote $\operatorname{LOS}=1$ is received, or remote $\mathrm{LCD}=1$ is received; then the transmitter shall assume a positive running disparity and start transmitting K28.5/D5.6 code groups.
(R50) If the LOS $=0$, the transmitter shall begin transmitting K28.5/D16.2 code groups starting when the current running disparity is negative.
(R51) The transmitter shall transmit a minimum of twenty-two consecutive K28.5/D16.2 code groups and if the remote status OK is true, then the transmitter shall transmit a K27.7 special character.
(R52) After the transmitter has transmitted a single K27.7 special character, the transmitter shall begin transmission of data characters.

Figure 4 : Transmitter synchronization state diagram

3.4 Loss of synchronization

(R53) If the receiver after 4 ms has not completed synchronization: LOS $=0$, remote status OK is true, and received a K27.7 special character; then the local LOS shall be set to 1 and the receiver and transmitter shall return to the start of synchronization.
(R54) At power up LOS shall be set to a 1 .

3.5 Media dependent sublayer

The media dependent sublayer is defined by the TBI PMD. Two PMD's are defined in this specification for the 1000 Mbit/s Cell-Based Physical Layer.

3.5.1 Single-mode or multi-mode fiber

(R55) The single-mode or multi-mode fiber TBI PMD in this specification shall use the 1000BASE-X PMD, specified in Clause 38 of the 802.3 IEEE Standard, 2000 Edition [8].

3.5.2 Twisted pair copper cable

(R56) The category 6 twisted pair copper cabling TBI PMD in this specification shall use the PMD specified in TIA/EIA-854 [10].

4 Acronym List

AIS Alarm Indication Signal
BIP Bit Interleaved Parity
CEC Cell Error Control
CRC Cyclic Redundancy Code
DSS Distributed Sample Scrambler
EDC Error Detection Code
HEC Header Error Check
LCD Loss of Cell Delineation
LOM Loss Of Maintenance
LOS Loss Of Signal
MSB Most Significant Bit
OAM Operation And Maintenance
OCD Out of Cell Delineation
PCS Physical Coding Sublayer
PMA Physical Medium Attachment
PMD Physical Medium Dependent
PSN PL-OAM Sequence Number
PRBS Pseudo Random Binary Sequence
RDI Remote Defect Indication
REB Remote Error Blocks
TBI Ten Bit Interface
TC Transmission Convergence
TP Transmission Path

5 Normative References

The following references contain provisions that, through reference in this text, constitute provisions of this specification. At the time of publication, the editions indicated were valid. All references are subject to revision, and parties to agreements based on this specification are encouraged to investigate the possibility of applying the most recent editions of the references indicated below.
[1] ITU-T I.432.1 Recommendation, B-ISDN USER-NETWORK INTERFACE PHYSICAL LAYER SPECIFICATION - GENERAL CHARACTERISTICS - December, 1995.
[2] ITU-T I.432.2 Recommendation, B-ISDN USER-NETWORK INTERFACE PHYSICAL LAYER SPECIFICATION FOR 155520 KBIT/S AND 622080 KBIT/S - December, 1995.
[3] ITU-T I. 361 Recommendation, B-ISDN ATM LAYER SPECIFICATION - 1993.
[4] ITU-T G. 826 Recommendation, ERROR PERFORMANCE PARAMETERS AND OBJECTIVES FOR INTERNATIONAL, CONSTANT BIT RATE DIGITAL PATHS AT OR ABOVE THE PRIMARY RATE - July, 1995.
[5] ITU-T G. 957 Recommendation, OPTICAL INTERFACES FOR EQUIPMENTS AND SYSTEMS RELATING TO THE SYNCHRONOUS DIGITAL HIERARCHY - July, 1995.
[6] ITU-T G. 958 Recommendation, DIGITAL LINE SYSTEMS BASED ON THE SYNCHRONOUS DIGITAL HIERARCHY FOR USE ON OPTICAL FIBRE CABLES.
[7] AF/PHY/0046.000 ATM Forum specification, 622.080 Mbps Physical Layer Specification - January, 1996.
[8] 802.3 IEEE Standard, 2000 edition: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.
[9] TR/X3.18-1997 ANSI Technical Report (Fibre Channel - 10-bit Interface).
[10] TIA/EIA-854, A Full Duplex Ethernet Physical Layer Specification for 1000Mbits/s operating over Category 6 Balanced Twisted Pair Cabling..

APPENDIX I

Distributed Sample Descrambler Implementation Example

This Appendix does not form an integral part of this specification.

Acquisition of scrambler synchronisation

The conveyed bits are extracted by modulo addition of the predicted values for HEC_{8} and HEC_{7} from the received values. Scrambler synchronisation may for example be achieved by comparing the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ at half cell intervals to the recursive descrambler sequence V_{t} (Figure I-1). In order to ensure the samples are compared to the recursive descrambler sequence at the same interval they were extracted from the source PRBS, the second sample $\mathrm{U}_{(\mathrm{t}+1)}$ (derived from HEC_{7}) is stored for 211 bits before it is used. Additionally, because both samples are applied to the recursive descrambler 211 bits behind their point of modulo addition to the transmitted data sequence, the recursive descrambler feedforward taps are chosen to generate a sequence that is advanced by 211 samples.

Figure I-1 illustrates a recursive descrambler implementation. Notation of sample values indicates the important sample values in each cell, time being referenced to the conveyed PRBS sample being received with HEC_{8}.

Acquisition state:
At time t :

- \quad the receiver PRBS generator sample V_{t} is at the input to the lower D-type D_{2};
- the source PRBS sample $S_{t}=U_{t-211}$ conveyed via $H E C_{8}$ is at input D_{1};
- the sample previously stored at the output of the lower D-type is $\mathrm{Q}_{2}=\mathrm{V}_{\mathrm{t}-211}$

$$
\text { Xor } 2=\mathrm{D}_{1}+\mathrm{Q}_{2}=\mathrm{U}_{\mathrm{t}-211}+\mathrm{V}_{\mathrm{t}-211}
$$

At this time, the feedforward taps (constant correction vector) are applied to the descrambler if AND2 gate output is high, that is if $\mathrm{U}_{\mathrm{t}-211} \neq \mathrm{V}_{\mathrm{t}-211}$.

At time $\mathrm{t}+1$:

- \quad the receiver sample $\mathrm{V}_{\mathrm{t}+1}$ is at the input to D_{2};
$-\quad$ the sample $\mathrm{S}_{\mathrm{t}+1}=\mathrm{U}_{\mathrm{t}+1}$ is at the input to D_{1}.

These values are latched on the following clock edge such that:
At time $\mathrm{t}+2$ through until $\mathrm{t}+212$:
$-\quad$ Xorl $=\mathrm{V}_{\mathrm{t}+1}+\mathrm{U}_{\mathrm{t}+1}$

At time $\mathrm{t}+212$:
At this time, the feedforward taps (constant correction vector) are applied to the descrambler if AND1 gate output is high, that is if $\mathrm{U}_{\mathrm{t}+1} \neq \mathrm{V}_{\mathrm{t}+1}$.
At time $\mathrm{t}+213=\mathrm{L}+\mathrm{t}-211$ (L being the duration of a cell):
$-\quad \mathrm{Q}_{2}=\mathrm{V}_{\mathrm{t}+213}=\mathrm{V}_{\mathrm{t}-211+\mathrm{L}}$ (held until the next cell cycle).

Verification of descrambler synchronisation

In this state the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ are extracted in the same way as during the Acquisition state, but the feedforward taps are no longer applied. Instead for each cell received with no error detected in bits HEC 1 to 6, the conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ are compared to the corresponding bits $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$ generated locally by the descrambler. Each time two correct predictions are made the confidence counter is incremented, else it will decrement.

Steady state operation (synchronised scrambler)
In this state the descrambler is assumed to be synchronised and feedforward taps are no longer applied. Instead, the descrambler samples $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$ are added by modulo 2 addition to the first two bits of the received HEC byte in order to regenerate the values of HEC8 and HEC7 bits. Therefore bits HEC8 and HEC7 can both be returned to normal use for error detection and error correction properties.

Figure I-1 : Example of descrambler implementation

APPENDIX II

Test Patterns

This Appendix does not form an integral part of this specification.
The example of operation described in this appendix is based on the transmission of 17 consecutive idle cells generated by the Cell-Based TC sublayer described in section 2. The transmitter operation is described in II 1 of this appendix and the receiver operation is described in II 2 of this appendix.

Notations:

- The content of an ATM cell is presented in the following format: H1 H2 H3 H4 HEC P1 P48. The bytes H1 to H 4 correspond to the cell header while the bytes P1 to P48 correspond to the cell payload. Each byte is given in hex value (hXX),
- The reference of time is noted \mathbf{t} (both in the transmitter and in the receiver),
- $\mathrm{U}(\mathrm{t}+\mathrm{x})$ is the state of the scrambler in the transmitter at time $\mathrm{t}+\mathrm{x}$. It is noted either as a 31 bits vector or as an hex value (example : $\mathrm{U}(\mathrm{t}+\mathrm{x})=0000000011111111000000001111111=\mathrm{h} 7 \mathrm{~F} 00 \mathrm{FF} 00$),
- $V(t+x)$ is the state of the descrambler in the receiver at time $t+x$. It is noted either as a 31 bits vector or as an hex value,
- $\mathrm{U}_{t+\mathrm{x}}$ is the output of the scrambler in the transmitter at time $\mathrm{t}+\mathrm{x}$,
- $\mathrm{V}_{\mathrm{t}+\mathrm{x}}$ is the output of the descrambler in the receiver at time $\mathrm{t}+\mathrm{x}$.

The content of an idle cell (prior to scrambling and HEC calculation) is :
$000000 \quad 01$ xx 6A 6A
6A 6A

II 1 Transmitter operation

The time reference in the transmitter is defined as the time when the first bit of the HEC field of the first cell is generated, coincident with the scrambler state $U(t)$. So t corresponds to the generation of the first HEC_{8} bit in the transmitter (Figure II-1).

At time t the scrambler in the transmitter is in a random state. If $U(t)=h 3 E C F E D E 8$ then $U_{t}=1$.

II 1.1 Cell scrambling

The scrambler sequence is added (modulo 2) bit by bit to the whole cell, except the HEC field, but the scrambler in the transmitter is not stopped during that time. This operation is represented in Figure II-1, as well as the scrambler state at time t .

When $\mathrm{U}(\mathrm{t})=\mathrm{h} 3$ ECFEDE8 then $\mathrm{U}(\mathrm{t}-32)=\mathrm{h} 0$ ABB8F39 and $\mathrm{U}_{\mathrm{t}-32}=1$.

Figure II-1 : Scrambling operation and scrambler initial state

After the scrambling is performed, the 17 idle cells become :
Cell 1:
BE CF ED E9 xx 0B 6F 32 5E B8 3559 4E EB 27 3E 6B 7C 25827922 0B 3B 78 7C BD D9 6F 2A BE 3C $34 \mathrm{E} 687 \mathrm{~A} 3 \mathrm{3F}$ BD 6D 6D 9C B4 14 1A EA 3171836 F 6D E3 2830 Cell 2:
 AE 91 0E 7B AC 2A E3 5582 E 3 EB EB 33 E 171 7D 41 CD ED 3687 5D 11 1D
Cell 3:
091941 9F xx CC F0 BF 57 4E F2 93 C2 6A D4 03 BA 60 F0 24 CA D6 FA 1D 20 DA 4D F0 54 08 5C FD F0 8D 6E 3C F1 D4 27 AE E6 F2 2D AB BA DE 99 F4 C0 4C B4 BD 9C Cell 4:
2050 D0 8F xx C6 C3 92 BB F9 A6 16 D0 713558 BF E9 272299582474 BF 2A 17 BA 94 ED 4C C4 7F 16 4D D7 1750 5E C7 43 BD 49 E2 A4 B6 15 F7 1A 15 6C 87 8D Cell 5:
$0 \mathrm{E} 6305 \mathrm{BF} \mathrm{xx} 9 \mathrm{C} 3 \mathrm{~A} F 830 \mathrm{E} 3 \mathrm{C} 26 \mathrm{~B} 77 \mathrm{E} 3 \mathrm{BA} 7989 \mathrm{E} 4 \mathrm{CB} 73959 \mathrm{D} 39 \mathrm{C} 6$ 6A F1 F7 F2 62 E4 88 DA F3 998402 C 6 B 35031 FE 4 B BB 640034 D 890 1B 3C 2039 9D Cell 6:
C8 $319892 \mathrm{xx} 10 \mathrm{D} 2 \mathrm{7D} 7 \mathrm{~B} 34 \mathrm{gB} 35 \mathrm{DD} 389 \mathrm{D} 2771 \mathrm{EO} \mathrm{F} 021 \mathrm{E} 5 \mathrm{D} 6 \mathrm{FA} 45$ 8E DA 48 CB E 8 080531488841 6E 01 8C 8C 2403 C9 C2 102317 BD 3A 6F 4C B1 CA 32 Cell 7:
20 OD 4533 xx A4 B3 2A E7 1A 4C E3 A7 88 4F E5 2F 8C 7980 BF C7 7312 9B E1 CF 1491 C7 777827 E 181 6A 29 C 30 C 6 E D7 AE C6 28 CD A9 F6 C5 59 D 499 C 736 Cell 8:
92 DD 8 F 71 xx 0983 8A FC 9327 A 228 OC 2D 7E C8 C2 950905 B4 62 9A 48 36 F4 88 OB 1A B9 88 BF 86 F3 82 9F 7A C7 34 D1 41 E 5 3C AE 8581 AB AD 4 B 01 F 596 Cell 9:

9B 5603 EA 9B D4 216492 F2 4C 9812 D8 48 A9 102 C 03 DB 3A 8022 1D
Cell 10:
AF 701794 xx 8B 3C 1B A7 BD A1 95 2C B9 4260 8A FE BA D1 A2 0E C0 A1 7C E9 93 4D 2F 52 0A 50 B3 9C A9 B2 46 EB D0 58 FB 72 BD 2659 D6 B0 3136 DE 7B 6918 Cell 11:
 5B 298599 1C D3 4A BB EC 8A 26 D1 09 AE 38 AA 91 A7 E3 E4 2129 E1 92
Cell 12:
22 BF A8 73 xx EF BD A8 5 F 3C B9 CD 55 AA F 757 E 9 E 283 C 955 F 5231 F EC A0 6F D9 OB 5E 3A 3A BB 47 CF C6 DA EB 7B F8 0379506829 7F BE 4A DD 1C 802073 Cell 13:
837035 AA $x x 89$ 5B 8F 17 9F 17 F7 4E D7 488268 C2 01 3A 45 BC 09 C8 C8 A0 970503 504642 2B BC F0 BE F4 AE F2 8A BB AA D5 A6 D5 E0 E9 38 ED D7 59 E7 1E Cell 14:
 B8 D3 60 F2 E4 88 D6 D3 9984 D 886 B 3 CC 21 7E 4B 624 D 0038 F 852 1B Cell 15:
 55 EC 1D B5 ED 01 F 8 2D 1204 6A 93 1C 5664 0F E5 D2 90 F9 8E 943673

```
Cell 16:
86 19 79 AA xx CF 03 8A 6B 76 27 AA 79 96 2D EB 72 56 9D 79 D9 DC F5 76 36 6E A5 97 12
2F 0A 47 1E B6 A8 E7 CE 1F C7 AB 65 DB ED F8 8E 11 1C 61 E5 2B E6 C5 80
Cell 17:
9B D3 A1 7D Xx F7 3F 5B D6 85 93 12 DD 4A 0F 10 76 2C F7 3F 96 8E 85 9E 5D ED 4A C1 7D
16 21 8D 33 56 43 D1 4B D0 A2 AE 32 B3 77 A7 56 49 8D 23 D0 13 D0 62 B9
```


II 1.2 HEC generation

The HEC value is computed on the scrambled header and the pattern h55 is added to the HEC field by modulo 2 addition.
For the first cell : HEC (BE CF ED E9) $=\mathrm{hAD}$ xor $\mathrm{h} 55=\mathrm{hF}$.
The HEC field of each cell after this operation is given in the following table :
Table II-1 : HEC field

Cell	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
HEC	F8	00	F1	A1	9 C	7 B	89	B4	41	C6	BD	F4	DE	0 C	0 D	C 8	62

II 1.3 Addition of scrambler samples

The last operation consists in modifying bits HEC_{8} and HEC_{7} of each cell to convey the two scrambler samples.
For the first cell : $\quad \mathrm{HEC}_{8}=\mathrm{HEC}_{8}$ xor $\mathrm{U}_{\mathrm{t}-211}$ and $\mathrm{HEC}_{7}=\mathrm{HEC}_{7}$ xor $\mathrm{U}_{\mathrm{t}+1}$,
For the second cell : $\quad \mathrm{HEC}_{8}=\mathrm{HEC}_{8}$ xor $\mathrm{U}_{\mathrm{t}+213}$ and $\mathrm{HEC}_{7}=\mathrm{HEC}_{7}$ xor $\mathrm{U}_{\mathrm{t}+425}$,
For the third cell : $\quad \mathrm{HEC}_{8}=\mathrm{HEC}_{8}$ xor $\mathrm{U}_{\mathrm{t}+637}$ and $\mathrm{HEC}_{7}=\mathrm{HEC}_{7}$ xor $\mathrm{U}_{\mathrm{t}+849}$,
Consequently the final value of the HEC field of each cell is given in the following table :
Table II-2 : Final HEC field

Cell	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
HEC	78	80	F1	61	5 C	7 B	49	34	01	46	FD	B4	DE	CC	4 D	08	62

II 1.4 Transmitted bytes

Important note: the transmitter operation has been described in three separate steps (II 1.1, II 1.2, and II 1.3) but as these three operations are linear they can be done at the same time (especially operations II 1.1 and II 1.3 which are both related to the scrambler output).

As a result of the operations described in II 1.1, II 1.2, and II 1.3 the resulting output is given below. Bytes are transmitted from left to right. In each byte the MSB (Most Significant Bit) is transmitted first. The HEC byte of each cell is highlighted.

```
BE CF ED E9 78 OB 6F 32 5E B8 35 59 4E EB 27 3E 6B 7C 25 82 79 22 0B 3B 78 7C BD D9 6F
2A BE 3C 34 E6 87 A3 3F BD 6D 6D 9C B4 14 1A EA 31 71 83 6F 6D E3 28 30 77 86 A1 12 80
OD 39 74 32 D1 FD B3 50 A4 38 4B B3 13 EC 34 4F 01 03 34 76 0A 2D 37 94 AE 91 0E 7B AC
2A E3 55 82 E3 EB EB 33 E1 71 7D 41 CD ED 36 87 5D 11 1D 09 19 41 9F F1 CC F0 BF 57 4E
F2 93 C2 6A D4 03 BA 60 F0 24 CA D6 FA 1D 20 DA 4D F0}54 08 5C FD F0 8D 6E 3C F1 D4 27
AE E6 F2 2D AB BA DE 99 F4 C0 4C B4 BD 9C 20 50 D0 8F 61 C6 C3 92 BB F9 A6 16 D0 71 35
58 BF E9 27 22 99 58 24 74 BF 2A 17 BA 94 ED 4C C4 7F 16 4D D7 17 50 5E C7 43 BD 49 E2
A4 B6 15 F7 1A 15 6C 87 8D ... (cells 5 to 16) ...
Last cell :
9B D3 A1 7D 62 F7 3F 5B D6 85 93 12 DD 4A 0F 10 76 2C F7 3F 96 8E 85 9E 5D ED 4A C1 7D
16 21 8D 33 56 43 D1 4B D0 A2 AE 32 B3 77 A7 56 49 8D 23 D0 13 D0 62 B9
```


II 2 Receiver operation

At start up the cell delineation process is in HUNT state and the descrambler process is in Acquisition state ($\mathrm{C}=0$).
During the HUNT state, the HEC check is done only on the last six bits of the HEC field (bits HEC6 to HEC1). As soon as a correct HEC is found the cell delineation process enters the PRESYNC state (where the HEC check is still done on 6 bits). During the PRESYNC state, the descrambler is in Acquisition state and the two conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ are extracted and used for descrambler synchronisation.

The first correct HEC is detected upon reception of the following bytes: BE CF ED E9 78, because : HEC (BE CF ED E9) $=\mathrm{hAD}$, this value is compared to (h 78 xor $\mathrm{h} 55=\mathrm{h} 2 \mathrm{D}$) and the last six bits are the same.

The time reference in the receiver is defined as the time when the first bit of the HEC field of the first cell is received, coincident with the descrambler state $\mathrm{V}(\mathrm{t})$. At time t the descrambler is in a random state. If $\mathrm{V}(\mathrm{t})=\mathrm{h} 2477 \mathrm{~F} 94 \mathrm{D}$ then $\mathrm{V}_{\mathrm{t}}=0$.

II 2.1 Acquisition state

During this state the conveyed samples are extracted by modulo addition between the received HEC value and the predicted HEC value :
Cell 1: received value = h78
predicted value $=(\mathrm{HEC}(\mathrm{BE} \mathrm{CF} \mathrm{ED} \mathrm{E} 9)=\mathrm{hAD})$ xor h55 $=\mathrm{hF} 8$
comparison between these two values : h 78 xor $\mathrm{hF} 8=\mathrm{h} 80$, so $\mathrm{U}_{\mathrm{t}-211}=1$ and $=\mathrm{U}_{\mathrm{t}+1}=0$.
Cell 2 : received value $=\quad \mathrm{h} 80$
predicted value $=(\operatorname{HEC}(7786 \mathrm{A1} 12)=\mathrm{h} 55) \operatorname{xor} \mathrm{H} 55=\mathrm{h} 00$
comparison between these two values : h 80 xor $\mathrm{h} 00=\mathrm{h} 80$, so $\mathrm{U}_{\mathrm{t}+213}=1$ and $=\mathrm{U}_{\mathrm{t}+425}=0$.
The conveyed samples are used for descrambler synchronisation, as explained in Appendix I. Every 212 bits the received sample U_{t+x} is compared to the corresponding bit V_{t+x} generated by the descrambler. If these two samples are not identical a constant correction vector ($\mathrm{K}=\mathrm{h} 34 \mathrm{DCCEC} 4$) is applied :
at time $\mathrm{t}: \mathrm{V}_{\mathrm{t}-211}=0$ is compared to $\mathrm{U}_{\mathrm{t}-211}=1 \rightarrow$ the correction vector K is applied,
at time $\mathrm{t}+212 \quad: \mathrm{V}_{\mathrm{t}+1}=0$ is compared to $\mathrm{U}_{\mathrm{t}+1}=0 \rightarrow$ the correction vector K is not applied, at time $t+424 \quad: \mathrm{V}_{\mathrm{t}+213}=0$ is compared to $\mathrm{U}_{\mathrm{t}+213}=1 \rightarrow$ the correction vector K is applied,...
The following table indicates the descrambler state at the times when the samples are compared and when the correction vector is potentially applied.

Table II-3 : Descrambler state

Time $(\mathrm{t}+\mathrm{x})$	$\mathrm{V}(\mathrm{t}+\mathrm{x})$ (bits 1 to 31)	$\mathrm{V}_{\mathrm{t}+\mathrm{x}}$	Comparison between :		Cor.
		descrambler	scrambler		
-211	0001110111110000110111000101001	0	-	-	-
0	1011001010011111111011100010010	0	$\mathrm{~V}_{\mathrm{t}-211}=0$	$\mathrm{U}_{\mathrm{t}-211}=1$	yes
1	0111101000111100110011000011111	0	-	-	-
212	0100110000000100100000010110011	1	$\mathrm{~V}_{\mathrm{t}+1}=0$	$\mathrm{U}_{\mathrm{t}+1}=0$	no
213	1010011000000010010000001011001	0	-	-	
424	0110110000000100000001011111010	1	$\mathrm{~V}_{\mathrm{t}+213}=0$	$\mathrm{U}_{\mathrm{t}+213}=1$	yes
425	1001010101110001001110011101011	0	-	-	
636	0011100010000011101001000010110	0	$\mathrm{~V}_{\mathrm{t}+225}=0$	$\mathrm{U}_{\mathrm{t}+425}=0$	no
637	0001110001000001110100100001011	0	-	-	-
848	1011101000111001001001100110010	0	$\mathrm{~V}_{\mathrm{t}+637}=0$	$\mathrm{U}_{\mathrm{t}+637}=0$	no
849	0101110100011100100100110011001	0	-	-	-
1060	0100111011010100110000111000111	1	$\mathrm{~V}_{\mathrm{t}+849}=0$	$\mathrm{U}_{\mathrm{t}+849}=0$	no
1061	1010011101101010011000011100011	1	-	-	-

1272	0111000100000111011101101110100	0	$\mathrm{V}_{\mathrm{t}+1061}=1$	$\mathrm{U}_{\mathrm{t}+1061}=1$	no
1273	0011100010000011101110110111010	1	-	-	-
1484	1110010111010111011111001000101	1	$\mathrm{V}_{\mathrm{t}+1273}=1$	$\mathrm{U}_{\mathrm{t}+1273}=1$	no
1485	1111001011101011101111100100010	0	-	-	-
1696	1111110001010100101110101011111	0	$\mathrm{V}_{\mathrm{t}+1485}=0$	$\mathrm{U}_{\mathrm{t}+1485}=1$	yes
1697	0101110101011001011001100111001	0	-	-	-
1908	1110001101100010010000111001110	1	$\mathrm{V}_{\mathrm{t}+1697}=0$	$\mathrm{U}_{\mathrm{t}+1697}=1$	yes
1909	1101001011000010000110101110001	1	-	-	-
2120	1000101011101100110101101001010	1	$\mathrm{V}_{\mathrm{t}+1909}=1$	$\mathrm{U}_{\mathrm{t}+1909}=0$	yes
2121	1110011000000101010100000110011	1	-	-	-
2332	1000111111100101110110110010111	1	$\mathrm{V}_{\mathrm{t}+2121}=1$	$\mathrm{U}_{\mathrm{t}+2121}=0$	yes
2333	1110010010000001110101101011101	0	-	-	-
2544	0111001110001001001100011011000	1	$\mathrm{V}_{\mathrm{t}+2333}=0$	$\mathrm{U}_{\mathrm{t}+2333}=1$	yes
2545	1001101010110111101000111111010	1	-	-	-
2756	0100111011000001101011100000110	0	$\mathrm{V}_{\mathrm{t}+2545}=1$	$\mathrm{U}_{\mathrm{t}+2545}=1$	no
2757	0010011101100000110101110000011	1	-	-	-
2968	1011011101100101101111111000111	1	$\mathrm{V}_{\mathrm{t}+2757}=1$	$\mathrm{U}_{\mathrm{t}+2757}=1$	no
2969	1101101110110010110111111100011	1	,	,	-
3180	1100010010100100100101011000101	1	$\mathrm{V}_{\mathrm{t}+2969}=1$	$\mathrm{U}_{\mathrm{t}+2969}=0$	yes
3181	1100000100100001011100011110100	0	-	-	-
3392	0010011101001111001011111001111	0	$\mathrm{V}_{\mathrm{t}+3181}=0$	$\mathrm{U}_{\mathrm{t}+3181}=0$	no
3393	0001001110100111100101111100111	1	-	-	-
3604	0110100001001010011110000001110	1	$\mathrm{V}_{\mathrm{t}+3393}=1$	$\mathrm{U}_{\mathrm{t}+3393}=1$	no
3605	1011010000100101001111000000111	1	-	-	-
3816	0101000000111001110101000010001	1	$\mathrm{V}_{\mathrm{t}+3605}=1$	$\mathrm{U}_{\mathrm{t}+3605}=1$	no
3817	1010100000011100111010100001000	1	-	-	-
4028	0110010101111111000011111010110	0	$\mathrm{V}_{\mathrm{t}+3817}=1$	$\mathrm{U}_{\mathrm{t}+3817}=0$	yes
4029	0001000111001100101111001111101	0		-	-
4240	1100111110110101000110011001001	0	$\mathrm{V}_{\mathrm{t}+4029}=0$	$\mathrm{U}_{\mathrm{t}+4029}=0$	no
4241	0110011111011010100011001100100	0		-	-
4452	0110000100101100101111000000101	1	$\mathrm{V}_{\mathrm{t}+4241}=0$	$\mathrm{U}_{\mathrm{t}+4241}=1$	yes
4453	1001001111100101011001010010100	0	-	-	-
4664	1101101100001001110101000111111	0	$\mathrm{V}_{\mathrm{t}+4453}=0$	$\mathrm{U}_{\mathrm{t}+4453}=0$	no
4665	0110110110000100111010100011111	0	-	-	-
4876	0000111000010111011110111101010	1	$\mathrm{V}_{\mathrm{t}+4665}=0$	$\mathrm{U}_{\mathrm{t}+4665}=1$	yes
4877	1010010001111000100001101100011	1	-	-	-
5088	1111001010110100110000001110110	0	$\mathrm{V}_{\mathrm{t}+4877}=1$	$\mathrm{U}_{\mathrm{t}+4877}=0$	yes
5089	0101101000101001010110110101101	0	-	-	-
5300	1001011010000000110110110001101	0	$\mathrm{V}_{\mathrm{t}+5089}=0$	$\mathrm{U}_{\mathrm{t}+5089}=0$	no
5301	0100101101000000011011011000110	0	-	-	-
5512	0001111111100000111011000001111	0	$\mathrm{V}_{\mathrm{t}+5301}=0$	$\mathrm{U}_{\mathrm{t}+5301}=1$	yes
5513	0010110010000011010011010010001	1	-		-
5724	0010000001001010110110001011000	1	$\mathrm{V}_{\mathrm{t}+5513}=1$	$\mathrm{U}_{\mathrm{t}+5513}=1$	no
5725	1001000000100101011011000101100	1	-	-	-
5936	0011011110010011000100000000000	0	$\mathrm{V}_{\mathrm{t}+5725}=1$	$\mathrm{U}_{\mathrm{t}+5725}=0$	yes
5937	0011100010111010101100110010110	0	-	-	-
6148	0101100100100001111110100001111	0	$\mathrm{V}_{\mathrm{t}+5937}=0$	$\mathrm{U}_{\mathrm{t}+5937}=1$	yes
6149	0000111111100011110001100010001	1	-	-	-
6360	1101010110011110100110000110000	0	$\mathrm{V}_{\mathrm{t}+6149}=1$	$\mathrm{U}_{\mathrm{t}+6149}=1$	no
6361	0110101011001111010011000011000	1	-		-
6572	0110101000100001111010111111111	0	$\mathrm{V}_{\mathrm{t}+6361}=1$	$\mathrm{U}_{\mathrm{t}+6361}=1$	no
6573	0011010100010000111101011111111	0			

Note: In this example the correction vector is applied 15 times. For each acquisition process, the number of times the correction vector is applied only depends on the transmit scrambler and the receive descrambler initial states which are random. For 16 consecutive cells received with no error detected in HEC bits 1 to 6 , the number of times the correction vector is applied ranges from 0 to 31 (0 corresponds to the unlikely case where the transmit scrambler and the receive descrambler are synchronised at start-up)

During the Acquisition state, each time a cell is received with no error detected in HEC bits 1 to 6 , the confidence counter is incremented $(\mathrm{C}=\mathrm{C}+1)$. Therefore at time $\mathrm{t}+6572$ (cell number 17) the confidence counter has reached the value 16 and the descrambler process enters the Verification state.

II 2.2 Verification state

When entering the Verification state, the descrambler in the receiver is assumed to be synchronised, because the 31 conveyed samples received during the Acquisition state are sufficient to insure descrambler synchronisation (this process is deterministic and does not depend on the transmit scrambler and receive descrambler initial states). However because the HEC check during the Acquisition state is performed only on the last six bits, undetected errors may have occurred in the conveyed samples (bits HEC_{8} and HEC_{7}) resulting in incorrect descrambler synchronisation. For this reason the Verification process tests for a couple of cells that the PRBS bits generated locally by the descrambler $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$ are identical to the expected ones $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$.

During the Verification state the conveyed samples $\left(U_{t-211}, U_{t+1}\right)$ are extracted in the same way as during the Acquisition state. Then they are compared to the PRBS bits generated locally $\left(\mathrm{V}_{\mathrm{t}-211}, \mathrm{~V}_{\mathrm{t}+1}\right)$ but feedforward taps are no longer applied. Instead when two correct predictions are made the confidence counter is incremented, else it will decrement.

At time $t+6752$ the first bit of cell 17 is received. At this time the descrambler state is h418CAFEA and the descrambler process has just entered the Verification state.

Received header for cell 17 : 9B D3 A1 7D 62 (HEC value $=$ h62),
Predicted HEC value $=$ HEC (9B D3 A1 7D) xor h55 $=$ h37 xor h55 $=$ h62,
Comparison between received HEC and predicted HEC : h62 xor h62 $=\mathrm{h} 00$, so $\mathrm{U}_{\mathrm{t}+6573}=0$ and $=\mathrm{U}_{\mathrm{t}+6785}=0$.
These received samples are compared to the corresponding bits generated locally by the descrambler $\left(\mathrm{V}_{\mathrm{t}+6573}=0\right.$, $\left.\mathrm{V}_{\mathrm{t}+6785}=0\right)$. As they are identical the confidence counter is incremented ($\mathrm{C}=17$). This verification process is repeated for the following cells (cells 18 to 24) until the confidence counter reaches the value of 24 and the descrambler process moves to the Steady state.

Note :
It is easy to verify that the descrambler is actually correctly synchronised when entering the Verification state :
at time $t+6752$ the descrambler state is h418CAFEA, so the bytes generated by the descrambler from time $t+6752$ are :
9B D3 A1 7C xx 9D 5531 BC EF F9 78 B7 2065 7A 1C 46 9D 55 FC E4 EF F4 378720 AB 17 7C 4B E7 59 3C 29 BB 21 BA C8 C4 58 D9 1D CD 3C 23 E7 49 BA 79 BA 08 D3
at time $\mathrm{t}+6752$ (beginning of cell 17) the received bytes are :
9B D3 A1 7D 62 F7 3F 5B D6 859312 DD 4A 0F 1076 2C F7 $3 F 96$ 8E 85 9E 5D ED 4A C1 7D
16218 D 335643 D 14 B D0 A2 AE 32 B 377 A7 5649 8D 23 D0 13 D0 62 B9
after modulo addition the result is :
$00000001 \times x 6 A$
6A 6A

II 2.3 Steady state operation

In this state the descrambler is assumed to be synchronised. The PRBS generated locally by the descrambler is used to descramble both the header and the payload of the received cells. The conveyed samples $\left(\mathrm{U}_{\mathrm{t}-211}, \mathrm{U}_{\mathrm{t}+1}\right)$ are no longer extracted, instead they are descrambled by modulo addition with the corresponding descrambler bits $\left(\mathrm{V}_{\mathrm{t}}\right.$ 211, $\mathrm{V}_{\mathrm{t}+1}$).

During this state the HEC check is performed by using the full eight bits of the HEC field thus enabling multiple bit error detection and single bit error correction. Cells with correct HEC (or cell headers with single bit error which are corrected) are passed to the ATM layer.

When the HEC check indicates a non-zero syndrome with error bits confined to HEC_{8} and HEC_{7} the confidence counter will decrement, else it is incremented (the upper limit of the confidence counter is 24).

II 2.4 Parallel implementation

The descrambler behaviour described in II 2.1, II 2.2, and II 2.3 of this appendix does not depend on the implementation of the DSS (serial or parallel). Nevertheless, in parallel implementation of the DSS, to receive data words (of 8,16 , or 32 bits) instead of a bit stream requires slight modifications in the application of the correction vector.

Example:
If the DSS implementation is in parallel with the 8 bit data word. The clock edges occur at time $t, t+8, \ldots, t+1904$, $\mathrm{t}+1912, \ldots$. Taking the same values as in II 2.1 :

- From a serial description :

$$
\begin{aligned}
& \mathrm{V}(\mathrm{t}+1908)=\mathrm{h} 39 \mathrm{C} 246 \mathrm{C} 7 \quad \text { (correction vector } \mathrm{K}=\mathrm{h} 34 \mathrm{DCCEC} 4 \text { is applied) } \\
& \mathrm{V}(\mathrm{t}+1909)=\mathrm{h} 4758434 \mathrm{~B} \\
& \mathrm{~V}(\mathrm{t}+1912)=\mathrm{h} 3 \mathrm{AC} 21 \mathrm{~A} 5 \mathrm{~F} \\
& \mathrm{~V}(\mathrm{t}+1913)=\mathrm{h} 758434 \mathrm{BF}
\end{aligned}
$$

- From a 8 bits parallel implementation :

The correction vector K can not be applied at time $\mathrm{t}+1908$ because this time is not coincident with a clock edge, so a modified correction vector K' will be applied at the next clock edge $t+1912$ (that is 4 bits later).

The determination of K^{\prime} is deduced from K by a 4 bits shift using the same polynomial as the scrambler $\left(1+x^{\wedge} 28+x^{\wedge} 31\right)$. So $K^{\prime}=h 4 D C C E C 42$.

