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1. Introduction
This specification defines procedures that provide a number of ATM security services. These services fall
into three broad categories–security services for user plane virtual circuits, security services for control
plane messages, and supporting services (management plane security services are not provided in this
specification). User plane security services are performed on a per-virtual-circuit basis, where a “virtual
circuit” can be either a virtual channel connection or a virtual path connection. Security support services
include security message exchange and negotiation, which are performed at connection establishment via
signaling, and/or within the user plane virtual circuit (after the connection is established, but before data
transfer). Once the virtual circuit is established, further in-band messaging is provided by security OAM
cells, as required by the negotiated cryptographic services.

This specification is organized as follows: Section 1 describes the scope and goals for this specification,
provides definitions and references to supporting specifications, and describes compliance requirements.
Section 2 provides a top-level reference model for the security services defined in this specification. Section
3 defines the user plane security services, including entity authentication, data confidentiality, data integrity
(also known as “data origin authentication”), and label-based access control. In Section 4, the control plane
authentication and integrity security services are defined. Security support services are described in Section
5. These services include security information exchange, negotiation, key exchange, session key update, and
certification. Section 6 contains the normative annex, which includes detailed specifications for in-band
security message exchange, primitives for the Security Services Information Element, specifications of
various cryptographic algorithms and modes, and algorithm-specific coding details. Finally, Section 7
contains the informative appendix, which includes examples related to cryptographic resynchronization rate,
label-based access control, and encodings of the Security Services Information Element.

1.1. Goals

This specification defines security services that support the following goals:

1. Support multiple specification-defined algorithms and key lengths.
Since each organization has different security requirements, each site will likely want the opportunity to
select from a variety of algorithms and/or protocols for their security designs. Furthermore, the
import/export laws of some countries place restrictions on which encryption products may be
imported/exported. For these reasons, the ATM security infrastructure and mechanisms specified here
must support multiple algorithms and/or key lengths.

2. Define a security infrastructure that provides interoperability among vendors who support one
or more of the algorithms defined in this specification.
Since it is not feasible to define one default algorithm to meet all organizations’ differing security
requirements, this specification defines interoperability parameters for several well-known algorithms
and common mechanisms for performing security functions using these algorithms.  Devices that
implement the algorithms and mechanisms as defined in this specification should interoperate with
other devices with which they share a common suite of algorithms.

3. Define a security infrastructure that provides for negotiation of private algorithms not specified
in this specification.
Because selection of algorithms is such a sensitive issue, some organizations will want unique security
algorithms tailored to their needs.  The security infrastructure should provide standardized mechanisms
for support of such algorithms, including means for agreement between two devices to use a private
rather than a specification-defined algorithm.
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4. Maintain compatibility with devices that do not implement the security extensions.
Security messaging and secured communications must be transportable by intermediate network
elements that do not understand or implement security.

5. Minimize the impact on other specifications.
Security cannot be implemented without some modifications to existing specifications.  These changes
should be as minimal as possible without compromising the other goals of security. When possible
mechanisms should be defined to support backward compatibility with existing specifications (e.g. UNI
3.1 and UNI 4.0.)

6. Maintain compatibility across successive versions of the Security Specification.
Even though this specification is of limited scope, this specification should define extensible
mechanisms to support future capabilities.

7. Define mechanisms that will scale to a large (potentially global) number of users.
ATM security must be as scaleable as other ATM protocols in order to provide security in the broadest
context.

8. Define mechanisms that provide separability of authentication and integrity from confidentiality.
Some countries (e.g. the US) differentiate confidentiality from authentication and integrity in their
export laws.  The security mechanisms for ATM should be partitioned such that the functions of
authentication and integrity may be implemented independently from confidentiality mechanisms.

1.2. References

1.2.1. Normative References

[1] ATM Forum Technical Committee, “B-ICI Specification, Version 2.0.”

[2] ATM Forum Technical Committee, “User-Network Interface (UNI) Specification,” Version 3.1,
September 1994.

[3] ATM Forum Technical Committee, “User-Network Interface (UNI) Signalling Specification,”
Version 4.0, April 1996.

[4] ATM Forum, “UNI Signaling 4.0 Security Addendum,”, ATM Forum BTD-CS-UNI-SEC-01.03,
October 1998.

[5] ATM Forum, “PNNI Signaling 1.0 Security Addendum,” ATM Forum BTD-CS-PNNI-SEC-
01.03, October 1998

[6] Federal Information Processing Standards Publication 46-2 (FIPS PUB 46-2), “Data Encryption
Standard (DES),” December 1993.

[7] Federal Information Processing Standards Publication 81 (FIPS PUB 81), “DES Modes of
Operation,” December 1980.

[8] Federal Information Processing Standards Publication 180-1 (FIPS PUB 108-1), “Secure Hash
Standard,” April 1995.

[9] Federal Information Processing Standards Publication 186 (FIPS PUB 186), “Digital Signature
Standard,” May 1994.
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[10] Federal Information Processing Standards Publication 188 (FIPS PUB 188), “Standard Security
Label for Information Transfer,” September 1994.

[11] IETF, “HMAC: Keyed-Hashing for Message Authentication,” RFC 2104, February 1997.

[12] IETF, “The MD5 Message Digest Algorithm,” RFC 1321, April 1992.

[13] IETF, “Privacy Enhancement for Internet Electronic Mail (PEM),” RFCs 1421-1424, February
1993.

[14] IETF, “U.S. Department of Defense Security Options for the Internet Protocol,” RFC 1108,
November 1991.

[15] ISO/IEC 9594-8, 1995 (E), Information Technology -- Open Systems Interconnection -- The
Directory: Authentication Framework.

[16] ISO/IEC 9594-8, 1995, Amendment 1: Certificate Extensions.

[17] ISO/IEC 9797, “Information Technology - Security Techniques - Data Integrity Mechanism using
a Cryptographic Check Function Employing a Block Cipher Algorithm,” 1994.

[18] ISO/IEC 10118-3, “Hash Functions - Part 3: Dedicated Hash Functions,” 1997.

[19] ITU-T Recommendation I.363, “B-ISDN ATM Adaptation Layer (AAL) Specification,” March
1993.

[20] ITU-T Recommendation I.610, “B-ISDN Operation and Maintenance Principles and Functions,”
November 1994.

[21] ITU-T Recommendation Q.2931, “B-ISDN DSS2 User-Network Interface Layer 3 Specification
for Basic Call/Connection Control,” February 1995.

[22] ITU-T Recommendation Q.2971, “B-ISDN DSS2 User-Network Interface Layer 3 Specification
for Point-to-Multipoint Call/Connection Control,” 1995.

[23] ITU-T Recommendation X.509, “The Directory: Authentication Framework,” 1993.

[24] Public Key Cryptography Standards #1 (PKCS #1), “RSA Encryption Standard,” RSA
Laboratories, Version 1.5, November 1993.

[25] ANSI X9.17, “Financial Institution Key Management (Wholesale),” April 1985, p.23.

1.2.2. Informative References

[26] Agnew, Mullin, and Vanstone, “Improved Digital Signature Scheme Based on Discrete
Exponentiation,” Electronic Letters, Vol. 26, pp. 1024-1025, 1990.

[27] Bird, et al., “The KryptoKnight Family of Light-Weight Protocols for Authentication and Key
Distribution,” IEEE/ACM Transactions on Networking, Vol. 3, no. 1, pp. 31-41, February 1995.

[28] ETSI TCR-TR 028, “Network Aspects (NA); Security Techniques Advisory Group (STAG);
Glossary of security terminology,” 1995.

[29] Fujioka, A., et al., “ESIGN: An Efficient Digital Signature Implementation for Smart Cards,”
Proceedings of Eurocrypt ‘91, Springer-Verlag, pp. 446-457, 1991.
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[30] IEEE P1363, “Standard Specifications For Public Key Cryptography,” Draft, Version 1, December
1997.

[31] IETF, “Internet Security Association and Key Management Protocol (ISAKMP),” RFC 2408,
November 1998.

[32] Miyaguchi, S., et al., “Expansion of FEAL Cipher,” NTT Review, Vol. 2, no. 6, pp. 117-127,
November 1990.

[33] Miyaguchi, S., “The FEAL Cipher Family,” Advances in Cryptology - CRYPTO ‘90, LNCS 537,
pp. 627-638, Springer-Verlag, 1991.

[34] Okamoto, T., “A Fast Signature Scheme Based on Congruential Polynomial Operations,” IEEE
Transactions on Information Theory, Vol. 36, no. 1, pp. 47-53, 1990.

[35] Schneier, B., Applied Cryptography, 2nd edition, John Wiley & Sons, 1996.

1.3. Definitions

Access Control - The application of a set of rules to a request for service to prevent the unauthorized use of
the service.

Authentication - The process of corroborating that an entity in an instance of a communication is the one
claimed.

Certification Authority - An entity trusted by one or more users to create and assign certificates.
Optionally, the certification authority may also create the user’s keys. [28]

Ciphertext Interface – The interface on a security agent that transmits and receives traffic that is
cryptographically protected by this security agent’s services.

Confidentiality - The protection of information (e.g., data) from unauthorized disclosure, even in the
presence of active, malicious threats.

Cryptographic System - A collection of transformations from plaintext into ciphertext and vice versa, the
particular transformation(s) to be used being selected by keys. The transformations are normally defined by
a mathematical algorithm. [28]

Digital Signature - Data appended to, or a cryptographic transformation of, a data unit that allows a
recipient of the data unit to prove the source and integrity of the data unit and protect against forgery. [28]

Endpoint - The entity initiating a request for a security service (e.g., endsystem). See also “User.”

In-Band Message Exchange - The exchange of security information in the previously established user data
connection. This connection could be either a VCC or a VPC, and could be established via SVC (signaling)
or PVC procedures.

Initiator - The security agent that generates FLOW-1 of the security message exchange protocol (described
in Section 5.1), or inserts label-based access control information (described in Section 3.4).

Integrity - The detection of unauthorized modifications to information, even in the presence of active,
malicious modification threats.

Key - A value or representation used to cryptographically transform information.



ATM Security Specification, Version 1.0 af-sec-0100.001

ATM Forum Technical Committee Page 5

Key Exchange - The process of communicating cryptographic key information between two or more
entities.

Plaintext Interface – The interface on a security agent that transmits and receives traffic that is not
cryptographically protected by this security agent’s services.

Private Key - In asymmetric (public-key) cryptography, that portion of a user’s key pair which is known
only to that user.

Public Key - In asymmetric (public-key) cryptography, that portion of a user’s key pair which is publicly
known.

Replay Prevention - The process of validating that a message previously communicated is not repeated
from another source impersonating as the original source.

Responder - The Initiator’s peer in the security message exchange protocol, or the target security agent for
label-based access control. For label-based access control, multiple target security agents are permitted.

Secret Key - In symmetric (secret-key) cryptography, a confidential key that is shared by all authorized
users.

Security Agent (SA) - An entity that initiates, establishes, provides, discontinues, or terminates any of the
ATM Forum Version 1.0 Security Services, such as Access Control, Authentication, Confidentiality and/or
Data Integrity.  A SA conforms to the top-level reference models, as defined in this specification, Section 2.

Security Association - The establishment of a secure relationship between two entities.

Security Negotiation - The process by which a secure environment is initiated, established, or denied
between two entities.

Signaling-Based Message Exchange - The exchange of security information in the signaling channel. In
this specification, this exchange is accomplished via procedures described in [3] and [4].

User - The entity initiating a request for a security service (e.g., endsystem). See also “Endpoint,”

1.4. Abbreviations

In addition to the abbreviations in the relevant ATM specifications (UNI 4.0, PNNI, etc.), the following
abbreviations apply:

CBC - Cipher Block Chaining [7]. A mode of operation for block ciphers (e.g., DES and FEAL).

CBC-MAC - CBC Message Authentication Code [17]. A mechanism for providing message integrity and
authenticity that uses a block cipher in CBC mode.

CRL - Certificate Revocation List.

DES - Data Encryption Standard [6]. A U.S. standard (published by NIST) for data encryption.

DES40 - DES with a forty-bit effective key.

DH - Diffie-Hellman. A key agreement algorithm.

DSA - Digital Signature Algorithm [9]. The algorithm specified by the DSS.

DSS - Digital Signature Standard [9]. A U.S. standard (published by NIST) for digital signatures.



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 6 ATM Forum Technical Committee

ECB - Electronic CodeBook [7]. A mode of operation for block ciphers (e.g., DES and FEAL).

ECC and EC - Elliptic Curve Cryptosystem (see Section 6.9). A public-key cryptosystem.

ECKAS-DH - Elliptic Curve Key Agreement Scheme - Diffie-Hellman. The Diffie-Hellman key agreement
scheme using elliptic curve cryptography.

ECDSA-like - Elliptic Curve Digital Signature Algorithm.

ESIGN - Efficient digital SIGNature scheme [29]. A digital signature algorithm.

FEAL - Fast Data Encipherment Algorithm [32] and [33]. An encryption algorithm.

HMAC - Hashed Message Authentication Code [11].

H-MD5 - HMAC using the MD5 hash algorithm.

H-SHA and H-SHA-1 - HMAC using the SHA-1 hash algorithm.

LIJ - Leaf Initiated Join. A method of adding leaves to a point-to-multipoint ATM call upon request of a
leaf.

MAC - Message Authentication Code.

MD5 - Message Digest 5 [12]. A hash algorithm that is typically used when generating digital signatures.

NIST - (U.S.) National Institute of Standards and Technology.

PTI - Payload Type Indicator. A field in the ATM cell header that is used to identify the type of the cell
payload contents.

PVC - Permanent Virtual Circuit. An ATM virtual circuit established by management operations.

RSA - Rivest, Shamir, and Adleman [[24]. The inventors of this encryption/digital signature algorithm.

SHA-1 - Secure Hash Algorithm (Revision 1) [8]. The hash algorithm specified by the DSS.

SA - Security Agent. A logical entity that implements ATM security functions. See definition for “Security
Agent” in Section 1.3.

SAS - Security Association Section.

SSCOP - Service Specific Connection Oriented Protocol. The connection-oriented protocol that is used by
UNI signaling for reliable delivery of signaling messages.

SSIE - Security Services Information Element.

SVC - Switched Virtual Circuit. An ATM virtual circuit established by ATM signaling.

UNI - User to Network Interface.

VC - Virtual Circuit

VCC - Virtual Channel Connection

VCI - Virtual Channel Identifier. A field in the ATM cell header.

VPC - Virtual Path Connection
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VPI - Virtual Path Identifier. A field in the ATM cell header.

1.5. Specification Scope

The scope of this security specification is indicated in Figure 1.  The shaded portions of the matrix show
what is within scope for this specification.  The structure of Figure 1 reflects the ATM Reference Model,
which defines three planes—the user plane, the control plane, and the management plane—with each plane
comprising three or more protocol layers—the physical layer, the ATM layer, the ATM Adaptation Layer
(AAL), and upper layers as required.  The user plane provides transfer of user data across ATM Virtual
Channel Connections (VCCs) and Virtual Path Connections (VPCs).  The control plane deals with
connection establishment, release, and other connection functions, including UNI, NNI, and ICI signaling.
The management plane performs management and coordination functions related to both the user and the
control planes (including the PNNI functions related to the establishment of a routing infrastructure).

As indicated in Figure 1, this document specifies mechanisms for authentication, confidentiality, data
integrity, and access control for the user plane.  It also specifies mechanisms for authentication and integrity
for the control plane (UNI and NNI signaling).  Excluded from the scope of this specification is
management plane security; however, to the extent that management plane entities use user plane
connections to achieve their ends, the user plane security specified herein may contribute to management
plane security.  Also within scope is the infrastructure needed to support these security services: negotiation
of security services and parameters, key exchange, and certification infrastructure.

User Plane Control Plane Management
Plane

Authentication

Confidentiality

Data Integrity

Access
Control

Figure 1.  Scope of Security 1.0.

The scope is restricted to ATM security: mechanisms that must be implemented in the ATM layer and/or the
AAL.  The emphasis throughout is on providing per-connection security rather than, for example, link or
node security.  The scope includes all types of ATM connections: channel and path; point-to-point and
point-to-multipoint; switched and permanent.

This document provides definitions for specific security mechanisms and protocols to support the
development of interoperable ATM security services. These security services are designed to be used in
conjunction with appropriate system and network security engineering practices for the enforcement of a
security policy.
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As stated above, this document specifies security services for the user plane (data connections) and control
plane (signaling flows). In addition, the required services that support user plane and control plane security
are also specified. The security services that are in the scope of this specification are described in more
detail below.

1.5.1. User Plane Security Services

The user plane security services apply on a per VC (virtual circuit) basis, where a VC could be either a
VCC (virtual channel connection) or a VPC (virtual path connection). Security services for physical links
(which may carry many VCs) are not provided in this specification. The following security services for the
user plane are defined: authentication, data confidentiality, data integrity, and access control. These services
are supported in point-to-point and point-to-multipoint connections for both SVCs and PVCs.

1.5.1.1. Authentication

User plane authentication (also described as “entity authentication”) determines at the beginning of the
connection that the identities of the calling and/or called parties are genuine. Since this service provides
protection against impersonation or “spoofing” threats, it is essential for establishing secure connections.
For this reason, authentication is essential for the operation of other security services, including key
exchange (described below), and the secure exchange of security negotiation parameters.

Authentication can be either mutual or unilateral. If authentication is mutual, then both parties are
authenticated to each other, whereas with unilateral authentication, only one party is authenticated to the
other.

Authentication is specified in this document to use cryptographic algorithms, including asymmetric (public
key) algorithms (e.g., RSA) and symmetric (secret key) algorithms (e.g., DES-MAC). These classes of
algorithms are described in more detail in [35].

1.5.1.2. Confidentiality

User plane confidentiality provides cryptographic mechanisms that protect “user” data on a VC from
unauthorized disclosure. (The term “user” refers to the protocol entity that directly uses ATM services.)
This specification defines ATM confidentiality at the cell level, rather than the AAL level, because the
fixed-length of the ATM cell allows for efficient encryption. Furthermore, only the payload of the cell is
encrypted–the header is sent in the clear. This allows the encrypted cell to be switched by the network
without decryption at each hop.

The confidentiality service is specified in this document to use symmetric (secret key) algorithms. This is
largely due to the fact that these algorithms are typically faster than asymmetric algorithms, which makes
them more suited to ATM data encryption.

1.5.1.3. Integrity

The data integrity service (also described as “data origin authentication”) provides a mechanism that allows
for detection of modification to data values or sequences of data values, even in the presence of malicious
modification threats.  This service is provided between endpoints at the AAL Service Data Unit (SDU) level
for AAL 3/4 and AAL 5. In addition, two options are provided for this service: 1) data integrity without
replay/reordering protection, and 2) data integrity with replay/reordering protection.

When data integrity is provided without replay/reordering protection, the source appends a cryptographic
signature to the tail of each AAL SDU before transmission. This signature is calculated over the entire AAL
SDU. This option is useful to higher layer protocols that provide their own sequence numbers (e.g., TCP),
without the added overhead required to duplicate this function at the AAL.
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When the data integrity is provided with the replay/reordering protection option, the data integrity service
provides protection against replay and reordering attacks, so that “old” or “reordered” AAL-SDUs are
detected and may be discarded. At the source, this is achieved by first appending a sequence number to the
tail of each AAL-SDU and then computing a signature on the totality of the AAL-SDU including the
sequence number. This signature, which protects both the AAL-SDU and the sequence number, is then
appended to the total AAL-SDU (which includes the sequence number). This method provides protection
for ATM applications that do not implement their own sequence numbers.

As with the confidentiality service, the integrity service is specified in this document to use symmetric
(secret key) algorithms.

1.5.1.4. Access Control

Access Control is the application of a set of rules to a request for a service.  These rules may depend upon
attributes of the invoking entity, such as identity, attributes of referenced parameters, such as a target
address, system attributes, such as time, and the history of prior requests by this and/or other client entities.
Access control rules can be thought of as a predicate over the state space formed by all such attributes.  If
the predicate is satisfied, the requested service is performed, if the predicate is not satisfied, the requested
service is not performed.

User plane access control requires mechanisms to transport access control information used during
connection establishment, as well as mechanisms within ATM components to use that information to
determine whether access to the connection should be granted.  User plane access control can be based on
security labels (e.g., Standard Security Label [10]), source or destination user identities, time of day, type of
service, upper-layer protocol (e.g., Internet Protocol) fields, or other parameters that can be determined
during connection establishment.

User plane access control is defined for each ATM interface: end-point-to-switch and switch-to-switch.  In
each case, user plane access control is provided at the ATM layer.

1.5.2. Control Plane Security Services

The control plane is the mechanism that allows devices to configure the network to achieve some objective
(for example, to establish a switched virtual circuit). Since control plane messages can affect the state and
availability of a network, their protection is extremely important.

In this Security Specification, a mechanism for signaling is defined that can provide strong cryptographic
data integrity with replay/reordering protection. This mechanism allows ATM control plane entities to
verify the source and contents of a signaling message before resources are allocated to the request. This
protects the network from a number of attacks, as described below.

Other security mechanisms for the control plane (e.g. control plane confidentiality) will be examined in later
versions of the Security Specification.

1.5.2.1. Authentication and Integrity

Control plane authentication and integrity is the ATM security service that binds an ATM signaling
message to its source. By creating this binding, the message recipient can confidently verify that the
message originated from its claimed source. This provides a mechanism that mitigates a number of threats.
For example, a denial of service attack, which attempts to tear down an active connection by surreptitiously
injecting RELEASE or DROP PARTY messages, can be prevented when authenticity assurances are in
place for the signaling channel. This service also protects against spoofing and malicious modification
threats. In this specification, a mechanism for control plane authentication and integrity between adjacent
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signaling entities is defined. The mechanism used is identical to the mechanism used for user plane data
integrity with replay/reordering protection.

1.5.3. Support Services

This specification also defines a set of “support services,” which are needed to provide scaleable and high-
performance security services:

• Security message exchange and negotiation of security options,
• Key exchange,
• Key update,
• Certification infrastructure.

1.5.3.1. Security Message Exchange and Negotiation

In order to perform many of the security services described above, messages must be exchanged between
the involved security agents (SAs). This specification describes two methods for security message exchange
–message exchange within UNI 4.0 signaling and in-band message exchange (that is, security message
exchange within the relevant user plane virtual circuit).

These message exchange methods also provide a mechanism for negotiation of security options. Since
security requirements vary among organizations, it is important to provide a variety of security services,
algorithms, and key lengths, which meet a wide range of security needs. In addition, the export and/or
import laws of some countries place restrictions on which encryption products may be exported/imported.
For these reasons, the ATM security mechanisms support multiple security services, algorithms, and key
lengths. In order for security agents to agree on common security parameters (such as algorithms and key
lengths), these security message exchange methods provide for negotiation of these parameters as part of
the security establishment procedure for the VC.

1.5.3.2. Key Exchange

Key exchange is the mechanism by which two security agents exchange secret keys for use by the
confidentiality and/or integrity services. In order to protect against “man in the middle”-type attacks, key
exchange is often coupled with the authentication service. This can be accomplished by including
“confidential” key exchange parameters within the authentication flows.

Like authentication, key exchange is performed with either symmetric (secret key) or asymmetric (public
key) algorithms. In addition, key exchange may either be bi-directional (two-way), or uni-directional (one-
way).

1.5.3.3. Session Key Update

Session keys are the keys used directly to provide user plane confidentiality and integrity services over an
ATM virtual circuit. Due to the potentially high data rate of the virtual circuit, it is imperative that keys be
periodically changed to avoid “key stream re-use.” This specification defines a session key update service
that provides this capability.

This service is performed in two phases–a session key exchange phase and a session key changeover phase.
The session key exchange phase uses a “master key,” which is exchanged at connection setup (using the key
exchange service), to encrypt the new session key. Upon receipt of the encrypted session key, the recipient
decrypts the session key using the shared master key, and stores it for the second phase–key changeover.
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1.5.3.4. Certification Infrastructure

In a public key cryptosystem, each party (security agent) X has a pair of keys: one of which is publicly
known, that is X’s “public key” (PKX), and the other known only by X, that is X’s “private key” (SKX). In
order for party A to send secret information to party B (or, alternatively, in order for A to be able to verify a
signature produced by B), A needs to obtain B’s public key, PKB. Though PKB is public by definition, it
should not be possible for any party X to substitute another value (e.g., PKX) for PKB. To prevent this kind
of attack, public keys can be exchanged in the form of “certificates.”

A certificate contains the party’s name, its public key, and some additional information and is signed by a
trusted party, a “certification authority” (CA). This signature unforgeably binds the public key to the subject
party. Any party with access to the CA’s public key can verify the genuineness of the certificate (by
checking the CA’s signature in the certificate) and recover the public key that was certified. Once signed,
certificates can be transmitted via non-secure message exchanges.

1.6. Compliance

Compliance for an ATM security implementation is defined on a per security service basis, for each of the
five services specified in this document:

1. User Plane Authentication (AUTH)
2. User Plane Confidentiality (CONF)
3. User Plane Data Origin Authentication and Integrity (INTEG)
4. User Plane Access Control (ACC)
5. Control Plane Authentication and Integrity (CP-AUTH)

To claim compliance with this specification, an implementation must support at least one security service
(that is, user plane authentication, user plane confidentiality, user plane integrity, access control, or control
plane authentication). For the user plane authentication, confidentiality, and integrity services, the
implementation must support:

1)  One or more of the SME profiles listed in Section 0.

And,

2)  At least one of the following:
a)  One or more algorithm profiles listed in Section 1.6.1,
b)  One or more user-defined algorithms.

For user plane access control, the implementation must support the access control profile in Table 4. For
control plane authentication, the implementation must support one of the control plane authentication
profiles in Table 5.

The compliance statement for the implementation must specify the security services and associated
algorithms and security messaging profiles supported.  In addition, the compliance statement must specify
all additional algorithms implemented for the five security services areas.  If those additional algorithms are
defined in this specification they must be implemented as specified herein.

1.6.1. Security Algorithm Profiles

The following tables list the algorithms and modes (where applicable) required for each ATM security
service.  Compliance requirements for each service are specified in their respective sections, and
compliance requirements for each algorithm are specified in the normative reference for that algorithm
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specified in the respective service sections. These profiles represent a subset of all possible algorithm
combinations, and some algorithms defined in this specification do not appear in the algorithm profiles.

Table 1: Authentication Algorithm Profiles.

Profile Signature Hash Notes
AUTH-1 DES/CBC n/a 1,2
AUTH-2 DSA SHA-1 1
AUTH-3 ECDSA-like SHA-1 1
AUTH-4 ESIGN MD5 1
AUTH-5 FEAL/CBC n/a 1,2
AUTH-6 RSA MD5 1

Note 1: Support for the Security Message Exchange (SME) is also required.
Note 2: No hash function is used with this profile.
n/a : not applicable

Table 2: Confidentiality Algorithm Profiles.

Profile Encryption Mode Signature Key
Exchange

Hash Key
Update

Notes

CONF-1 DES CBC RSA RSA MD5 MD5 1
CONF-2 DES CBC DSA DH SHA-1 SHA-1 1
CONF-3 DES CBC ECDSA-

like
ECKAS-DH SHA-1 SHA-1 1

CONF-4 DES CBC DES/CBC DES/CBC n/a MD5 1
CONF-5 DES Counter RSA RSA MD5 MD5 1
CONF-6 DES Counter DSA DH SHA-1 SHA-1 1
CONF-7 DES Counter ECDSA-

like
ECKAS-DH SHA-1 SHA-1 1

CONF-8 DES Counter DES/CBC DES/CBC n/a MD5 1
CONF-9 Triple-DES CBC RSA RSA MD5 MD5 1
CONF-10 Triple-DES CBC DSA DH SHA-1 SHA-1 1
CONF-11 Triple-DES CBC ECDSA-

like
ECKAS-DH SHA-1 SHA-1 1

CONF-12 Triple-DES CBC Triple
DES/CBC

Triple
DES/CBC

n/a MD5 1

CONF-13 Triple-DES Counter RSA RSA MD5 MD5 1
CONF-14 Triple-DES Counter DSA DH SHA-1 SHA-1 1
CONF-15 Triple-DES Counter EC/DSA EC/DH SHA-1 SHA-1 1
CONF-16 Triple-DES Counter Triple

DES/CBC
Triple
DES/CBC

n/a MD5 1

CONF-17 FEAL CBC ESIGN DH MD5 MD5 1
CONF-18 FEAL CBC FEAL/CBC FEAL/CBC n/a MD5 1
CONF-19 FEAL Counter ESIGN DH MD5 MD5 1
CONF-20 FEAL Counter FEAL/CBC FEAL/CBC n/a MD5 1

Note 1: Support for the Security Message Exchange is also required.
n/a : not applicable
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Table 3: Integrity Algorithm Profiles.
Profile MAC Signature Key Exchange Hash Key Update Notes

INTEG-1 DES/CBC RSA RSA MD5 MD5 1,2
INTEG-2 DES/CBC DSA DH SHA-1 SHA-1 1,2
INTEG-3 DES/CBC EC/DSA EC/DH SHA-1 SHA-1 1,2
INTEG-4 DES/CBC DES/CBC DES/CBC n/a MD5 1,2
INTEG-5 H-MD5 RSA RSA MD5 MD5 1,2
INTEG-6 H-MD5 DES/CBC DES/CBC n/a MD5 1,2
INTEG-7 H-SHA-1 DSA DH SHA-1 SHA-1 1,2
INTEG-8 H-SHA-1 EC/DSA EC/DH SHA-1 SHA-1 1,2
INTEG-9 H-SHA-1 DES/CBC DES/CBC n/a SHA-1 1,2
INTEG-10 FEAL/CBC ESIGN DH MD5 MD5 1,2
INTEG-11 FEAL/CBC FEAL/CBC FEAL/CBC n/a MD5 1,2

Note 1: Support for the Security Message Exchange is also required.
Note 2: Support for the two versions of integrity, i.e., with and without replay protection, is required.  The

selection is negotiated at call setup time.
n/a : not applicable

Table 4: Access Control Label Profiles.

Profile Label Formats Notes

ACC-1 Standard Security Labels 1

Note 1: Because access control labels are processed independently at each security agent that performs
access control, support for the Security Message Exchange is not required.

Table 5: Control Plane Authentication Algorithm Profiles.

Profile MAC Key Update Notes

CP-AUTH-1 H-MD5 MD5 1

CP-AUTH-2 H-SHA-1 SHA-1 1

CP-AUTH-3 DES/CBC SHA-1 1

CP-AUTH-4 FEAL/CBC MD5 1

Note 1: Because control plane authentication messages are processed independently at each security agent
that performs this service, support for the Security Message Exchange is not required.Security Message
Exchange Profiles

Three security message exchange profiles are specified for ATM security messaging:

1. In-band security messaging (SME-1),
2. Signaling-based security two-way messaging, with a fall-back to in-band security messaging

(SME-2),
3. Signaling-based security two-way messaging for the pt-mpt ADD PARTY message (SME-3).

Table 6 specifies the sections required for compliance with each profile.  The implementation shall be
compliant with the mechanisms specified in the referenced mechanism section.  Note that the initial
connection in a pt-mpt call is accomplished using SME-2.  SME-3 is defined only for subsequent ADD
PARTY messages.
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Table 6: ATM Security Message Exchange Profiles.

Profile ATM Bearer
Service

Security Message
Service

Message Exchange
Protocol

Mechanisms Notes

SME-1 Pt-pt PVCs
Pt-pt SVCs

In-band 5.1.1.1 5.1.5.2
5.1.5.3
6.1

SME-2 Pt-pt SVCs Signaling-Based
2- Way, with In-
band Fall-Back

5.1.1.2 (for Signaling-
Based)

5.1.1.1 (for In-band)

5.1.4.1
5.1.4.4

5.1.5.3
6.1

1

SME-3 Pt-mpt SVCs
(ADD PARTY)

Signaling-Based
2- Way

5.1.1.2 5.1.4.2
5.1.4.4

2

Note 1: “In-band Fall-Back” is the ability of the security agent to perform additional messaging using the
in-band SME (i.e., SME-1).

Note 2: Support for SME-3 requires SME-2 for the initial connection establishment.
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2. Top-Level Reference Models
This informative section presents several reference models that help clarify and define the intended scope
and functionality of this specification.  It also presents a high-level overview of the security services and
mechanisms.

Note that the Access Control security service is different from the other security services–it is not
negotiated, and many of the other concepts associated with the other services do not apply to this service.
Consequently, this section concentrates on the other three security services; the reader is referred to Section
3.4 for reference models for the access control service.

2.1. Security Associations and ATM Interfaces

A security agent negotiates and provides the security services for a VC.  Figure 2 shows the simplest case,
in which security agents are collocated with ATM end systems.  In this case, the end systems interface to an
ATM network via a UNI.  For each VC that is established by an end system, the Security Agent (SA) at that
end system:

• Determines which security services, if any, need to be applied to that VC,
• Negotiates the service or services with the peer SA,
• Authenticates and exchanges keys, if necessary,
• Applies the required security service(s) to the VC.

SA

End System

SA

End System
ATM Network

UNI UNI

Application Application

ATM
Virtual

Channel

Security
Association

SA Security
Agent

Figure 2.  Security Association between Security Agents at End Systems.
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The determination of which security services are needed for which VCs is a matter of security policy, which
is beyond the scope of this document.   Also, the existence and nature of any interaction between the end
system application and its local security agent is beyond the scope of this document.

The negotiation of services with a peer security agent takes place via Security Information Exchange (SIE),
an overview of which Section 2.3 presents.  Via negotiation, the peer SAs establish one Security
Association (or Security Context) for each service to be provided.  Thus, if authentication, confidentiality,
and data integrity are all required for a given VC, there are three Security Associations between the peers,
one for each service.  A Security Association is the distributed contextual information (e.g., cryptographic
algorithm, mode of operation, optional features enabled, etc.) controlling the nature of the security service
to be provided for a given VC.

If required, authentication and initial key exchange also occur during service negotiation.  Key exchange is
required for support of the confidentiality and data integrity services.  The negotiation supports the
exchange of connection master keys (keys used to generate future connection “session” keys if needed) and
initial connection session keys for encryption and/or cryptographic checksums.

The application of the services to the VC varies according to the service.  For authentication, the service is
effected during negotiation.  For confidentiality, encryption is applied to ATM data cell payloads, with
maintenance of cryptographic state and call session key updates provided (optionally) via OAM flows.  For
data integrity, a cryptographic checksum and a sequence number (optional) are appended to AAL5 service
data units (SDUs).

Note:  The end-system-to-end-system model in Figure 2 is the only one that applies for the data integrity
security service.  This is because data integrity is applied at the AAL.
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Figure 3.  Security Association between a SA at a Switch and a SA at an End System.

Figure 3 shows another configuration of SAs.  In this figure, one SA is located within an ATM end system
and one is located within an ATM switch.  The overall operation is the same as that reflected in Figure 2:
determination, negotiation, and application of security services via Security Associations between peer
Security Agents.  However, Figure 3 highlights some possibilities–and some interactions–which might not
be immediately obvious from Figure 2.  Figure 3 implies the possibility of “firewall” Security Agents–SAs
that provide security services for one or more networks “behind” the firewall.  It also implies a close
coupling of signaling entities and the security agent.  Finally, it implies that switches that come equipped
with Security Agents will be required to perform functions not normally associated with switches–for
example, encryption of data cell payloads.

The security agent within the switch could maintain an identity distinct from those of any end systems, or it
could serve as a proxy for one or more end systems.  In the former case, the remote peer SA would
explicitly authenticate (assuming authentication is required) the SA at the switch (i.e., the SA identifier
would not imply collocation with the end system); in the latter case, the remote peer SA would authenticate
a virtual SA at the end system.  With proxies, the identities and accompanying authentication information
(e.g., public and private keys) are kept and vested with the proxy agents rather than distributed among the
end systems.

Note that a security service is only applied to that portion of a VC between the peer SAs providing the
service.  So, as pictured in Figure 3, there is no security applied to the VC between the left-hand end system
and the switch containing the security agent.  Whether or not this is acceptable, is, once again, a matter of
security policy.  However, as the next section shows, it is possible to provide different levels of security for
different portions of a VC.
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2.2. Multiple Security Associations and Nesting

Figure 4 shows that more than one pair of security agents–and more than one security association–might be
involved in providing security services for a given VC.  In this figure, SA1 and SA4 have a security
association in which they provide (say) end-to-end authentication.  Independent of this association, SA2 and
SA3 have an association in which they provide confidentiality.  These two associations are independent in
terms of the services they provide–SA1 and SA4 neither know nor care what security services other agents
might be providing.  This independence allows multiple (and different) security policies to be in force
simultaneously for different parts of the network.

ATM Switch

UNI

SA2

End System

SA3

End System

ATM Network

NNI NNI

Application Application

ATM
Virtual

Channel

Security
Associations

ATM Switch

UNI

SA1 SA4

Figure 4.  Two Nested Security Associations.

There are some dependencies and restrictions, however, on what might be called the topology of security
associations; these dependencies result from the mechanisms chosen to negotiate security services and form
security associations.  By topology is meant the way different security associations are allowed to overlap
along the path of a VC. Figure 4 shows one type of overlap that is permitted–nesting.  We could say that the
VC “segment” [SA2, SA3] is contained in the [SA1,SA4] segment, or, in symbols, [SA2, SA3] ⊂ [SA1,SA4].
Another permissible relationship among associations is no overlap.  If, instead of what is pictured, the
associations were between SA1 and SA2, and SA3 and SA4, the segments  [SA1, SA2] and [SA3,SA4] would
have no overlap and the associations would be permissible.  We could write this [SA1, SA2] ∩ [SA3,SA4].
Similarly, if the associations were between SA1 and SA3, and SA3 and SA4, the segments  [SA1, SA3] and
[SA3,SA4] would have no overlap and the associations would be permissible (this could with justification be
called one-point overlap–but it’s a permissible arrangement and for simplicity we’ll refer to this as “no
overlap” also).  Nesting and no overlap are the only permissible arrangements.  The mechanisms will not
support simultaneous associations between SA1 and SA3, and SA2 and SA4, for example.
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In addition to these topological restrictions, there is also a limit of 16 on the nesting level–the total amount
of nesting at any given point along the VC’s path.  Note that this is not a limit per se on the total number of
security associations for any given VC.

Figure 5 shows one example of the types of topologies that the security mechanisms support. The maximum
nesting level in this example is 3.   It would not be possible in the situation pictured in this figure to support
another security association involving (say) SA3 and SA8, as this would violate the topological restrictions.

SA1

ES ESSW SW SWSW SW SW SW

SA2 SA3 SA4 SA5 SA6 SA7 SA8

Security Association 1

Security Association 2

Security Association 4Security Association 3

Figure 5.  Multiple Associations with Nesting.

2.3. Security Information Exchange

Figure 6 shows the three types of information exchange that might be involved in establishing and
maintaining security associations.  The Security Message Exchange (SME) protocol is used to negotiate
security services, establish security associations, authenticate the peer security agents (if required), and
establish connection master keys and initial session keys.  The SME can operate over the signaling channel
(for networks that support the UNI Signaling 4.0 Security Addendum [4] or PNNI Signaling 1.0 Security
Addendum [5]) or over the data channel that is pre-established or in the process of being established.  The
former is referred to as “Signaling-Base SME” and the latter as “In-band SME.”

SA SA

Signaling-Based SME

In-band SME

Security OAM Cells

Any combination of these three
Security Information Exchange
methods could be used to support
any given security association.

Figure 6.  Security Information Exchange Methods.

As stated earlier, signaling-based SME is used in networks that support the UNI Signaling 4.0 Security
Addendum [4] or the PNNI Signaling 1.0 Security Addendum [5]. Support for B-ICI and other signaling
protocols is not currently defined.  An example of SME usage in a network that supports the Security
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Addenda is shown in Figure 7 (where “UNI 4.0 + sec” and “PNNI 1.0 + sec” denote links that implement
the UNI and PNNI security addenda). In this case, the end systems (with Security Agents) append the SSIE
to the signaling message, and as the network establishes the call, the SSIE is passed without modification.

SA

End System

UNI 4.0 + sec
 Link

PNNI 1.0 + sec
Link

SA

End System

SA Security
Agent

Figure 7.  Entire Network Supports Signaling-Based SME.

A more likely scenario is one that contains network elements that do not support signaling-based SME. An
example of this scenario is shown in Figure 8.

Calling
End System

UNI 4.0 + sec
Switch

SA

UNI 4.0 + sec
Switch

SA

Called
End System

SA

Private
UNI 4.0 + sec
Network

VP Tunnel
Signaling
VC

Public
UNI <= 4.0
Network

Private
UNI <= 4.0
Network

Figure 8.  Portion of Network Does Not Support Signaling-Based SME.
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In this scenario, the calling endpoint is attached to a network that supports signaling-based SME. The
initiating security agent in this endpoint supplies security information along with the signaling message, and
the message traverses the private network. When the message reaches the boundary UNI 4.0 + sec switch, it
is signaled through a Virtual Path tunnel to the remote switch, which also supports signaling-based SME.
Although the public network does not support signaling-based SME, the VP tunnel allows the two border
switches to signal each other directly, and hence, allows SME to traverse the public network.

Since the remote switch contains a security agent that terminates the security association, the remaining
network elements do not need to support signaling-based SME.

If none of the network elements are expected to support signaling-based SME, then the In-band SME
protocol introduced earlier can be used instead. An example where this protocol should be used is
illustrated in Figure 9.

Calling
End System

Sw itch

SA

Sw itch

SA

Called
End SystemPrivate

UNI <= 4.0
Netw ork

User Plane
VC

Public
UNI <= 4.0
Netw ork

Private
UNI <= 4.0
Netw ork

Figure 9.  Using the In-band SME Protocol in Networks that do not support Signaling-Based SME.

In this case, the calling end system initiates the connection setup request, and the request propagates to the
called end system as usual. As the call setup request progresses, the security agents augment the signaling
message with security information, which is dropped by the networks (because they do not recognize the
security services information elements). As a result, the downstream security agents do not see security
information in the call setup message. As the connection confirmation signal propagates back from the
called end system to the calling end system, the security agents augment the signaling message with security
information, which is also dropped by the networks. However, as the network propagates the connection
confirmation, the user plane virtual circuit is constructed along the way. When the user plane VC connects
the two security agents, data transfers from the end systems are blocked, and the SAs perform the SME
protocol within this virtual circuit. This protocol is described in more detail in Section 5.1.5.

Note: For voice calls, the voice path is typically cut through (voice traffic is allowed) in both directions
except at the terminating exchange. At the terminating exchange the path is not cut through to the called
party. The backward path is cut through to allow for the calling party to hear tones and announcements that
may occur before answer (e.g., ringing, reorder, busy, “the number you have dialed is no longer in service”)
and to avoid speech clipping when the called party picks up and says hello. If the Security Agent blocks the
voice path to be used in the backward direction prior to connect (e.g., after an ALERTING or PROGRESS
message) then the calling party might abandon the call or miss receiving important in-band information.  In
the case where an end station requests security services, it should not assume such services are operational
until the CONNECT message is received and the SME is complete.

Regardless of the SME method used, after the SME is complete, OAM flows may be used to maintain the
state of the security associations.  Specifically, Security OAM cells are used:
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• To exchange additional connection session keys for confidentiality and data integrity as needed.
(Note that the initial session keys are established during SME.)

• To maintain synchronization of encryption engines relying on the counter mode of operation.
 

 For the purposes of exposition, the functions of the Security Agent may be decomposed into several
sections:

• SAsme, those functions of the security agent that interact with signaling, or with a peer security
agent, to perform the Security Message Exchange,

• SAservice, those functions of the security agent that provide the actual authentication, integrity
check, and confidentiality services,

• SApolicy, those functions of the security agent that determine when and how security must be
applied,

• SAmisc, the remaining functions of the security agent such as OAM cell processing.

This division is for descriptive purposes only and does not imply how a specific implementation of a
security agent is decomposed.
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3. Security Services for the User Plane

3.1. Entity Authentication

3.1.1. Authentication Reference Model

Authentication is provided via an exchange of information between SAsmes that proves to the authenticating
SAservice that the authenticated SAservice possesses a secret that is known solely by the authenticated entity (or
its proxy) or exclusively by the two entities (or their proxies).  Authentication may either be bi-directional
(calling party to called party or parties and vice versa) or uni-directional.  The authenticated entities in all
cases are the Security Agents associated with the user plane entities that terminate the ATM virtual path or
channel.  If provided, ATM authentication shall be on a per-VC basis.  This means that

• The decision to authenticate or not is determined on a VC-by-VC basis.
• Authentication is performed once for a connection, at the beginning of that connection.

Authentication is effected by means of nonces and message digests as described in Section 5.1, using either
symmetric or asymmetric mechanisms.

As Sections 5.1.2 and 5.1.5 explain, two ways are specified for negotiating security services: signaling-
based and in-band.  There are differences in the reference models for how the authentication service is
provided for the two cases.

Figure 10 shows the object and layer reference models for the authentication service in the case where
security messaging is signaling-based.  In this case SAsme is called by signaling.  The SAsme coordinates with
the control entity so that authentication is provided for the user plane entities requesting it.

The object and layer reference models for the case where security messaging is in-band (Figure 11) is
similar to the signaling-based model except that the SAsme completes its exchange by passing messages in
the user data stream, as shown in Figure 11.  Otherwise the object interactions are as for the signaling-based
case.
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Figure 10.  Object and Layer Reference Models for Authentication,
Signaling-Based Messaging.
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In-band Security Messaging.

3.1.2. Authentication Infrastructure and Mechanisms

This authentication protocol is described in the context of the “security message exchange protocol” in
Section 5.1. The messages that are used by this protocol are described in Section 5.1.5.3, Section 5.1.4.4,
[4], and [5].
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3.1.3. Authentication Algorithms

Authentication is provided in the context of the Security Message Exchange protocol, described in Section
5.1. Authentication is performed using either symmetric (secret) key algorithms (such as DES) or
asymmetric (public) key algorithms (such as RSA). With symmetric algorithms, before authentication can
take place between two nodes, the two nodes need to have a shared secret key. With asymmetric key
algorithms, the nodes only need to know each other’s public keys.

Before authentication can take place between two security agents, the two SAservices need to obtain keys for
the cryptographic techniques.

In the case of symmetric algorithms, the two SAservices need to have a pair of shared secret uni-directional
keys. These keys are pre-placed through methods outside the scope of this document (e.g., manual
configuration).

In the case of asymmetric key algorithms, the SAservices need to know each other’s public keys. These public
keys may be obtained in three ways:

1. By retrieving the SA’s public key certificate from a public key directory,
2. By exchanging public key certificates directly during security negotiation, or
3. By pre-placing public keys using methods outside the scope of this document.

Note: the generation, distribution, and storage of the secret, private, and/or public keys is outside the scope
of this specification.

The following sections define which algorithms may be used with either method (symmetric or asymmetric)
of this authentication protocol. Note that before this protocol can commence, both parties must negotiate the
algorithm. This negotiation protocol is described in the context of the “security message exchange protocol”
in Section 5.1.

Associated with each algorithm is a codepoint that is used for identification when negotiating security
options. These codepoints are listed in Section 6.1. Procedures for using user-defined algorithm codepoints
are also described in Section 6.1.

3.1.3.1. Asymmetric Digital Signature Algorithms

The following asymmetric (public-key) digital signature algorithms are defined in this specification for user
plane authentication.

Algorithm Normative Reference
RSA [[24]
DSA [9]
Elliptic Curve/DSA Like Section 6.9
ESIGN Section 6.5

3.1.3.2. Symmetric Digital Signature Algorithms

The following symmetric (secret-key) digital signature algorithms are defined in this specification for user
plane authentication.
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Algorithm Normative Reference
DES (in CBC mode) [6], Section 6.6
DES40 (in CBC mode)  Section 6.6, Section 6.7
Triple DES (in CBC mode) [25], Section 6.6
FEAL (in CBC mode) [32], [33], Section 6.6

3.1.3.3. Hash Function

 The following hash functions are defined in this specification for use with both asymmetric and symmetric
digital signature algorithms.

Hash Function Normative Reference
MD5 [12]
SHA-1 [8]
RIPEMD-160 [18]

3.1.4. Error Processing

Error processing for the entity authentication service is described in the context of the security message
exchange protocol in Section 5.1.

3.2. Confidentiality

3.2.1. Confidentiality Reference Model

Confidentiality is provided via encryption.  If provided, ATM encryption shall be on a per-VC basis (recall
that “VC” could be either a Virtual Channel Connection [VCC] or Virtual Path Connection [VPC]).  This
means that:

• Encryption is applied to the sequence of data cells in a single VC.
• The decision to encrypt or not is determined on a VC-by-VC basis.
• For encrypted VCs, encryption parameters are determined (and may vary) on a VC-by-VC basis.

In all cases, encryption is applied to all or part of the 48-byte payloads of the relevant ATM cells. In terms
of ATM architecture and layering, then, encryption takes place at the ATM layer. Other approaches to
confidentiality (e.g., bulk link encryption, AAL-level encryption) are outside the scope of this document.

As Sections 5.1.2 and 5.1.5 explain, there are two ways specified for negotiating security services:
signaling-based and in-band.  There are differences in the reference models for how the confidentiality
service is provided for the two cases.

Figure 12 shows the object and layer reference models for the confidentiality service in the case where SME
is signaling-based.  In this case, the SAsme is called by the control plane entity.  As explained above, the
encryption/decryption function of SAservice is logically part of the ATM layer entity, because all encryption
is applied on a per-VC basis.   When required by the selected cryptographic mode, the encryption/
decryption function of SAservice maintains the state via OAM cells carried over end-to-end F4 or F5 flows
(for VPCs and VCCs respectively).
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Figure 12.  Object and Layer Reference Models for Confidentiality,
Signaling-Based Messaging.

The object and layer reference models for the case where security messaging is in-band (Figure 13) are
similar to the signaling-based models except for the placement of the SAsme.  For the in-band case, the SAsme

would move out of the control plane entity, as shown in Figure 13.  Otherwise the object interactions are as
for the signaling-based case.
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Figure 13.  Object and Layer Reference Models for Confidentiality,
In-band Security Messaging.

3.2.2. Confidentiality Infrastructure and Mechanisms

In this specification, symmetric (secret key) algorithms provide user plane confidentiality. In addition, the
algorithms listed below must be used in a specific mode of operation. Keys for these algorithms can be
either pre-placed (configured manually), or determined using the Key Exchange methods described in
Section 5.2.

Associated with each algorithm and mode of operation is a codepoint that is used for identification when
negotiating security options. These codepoints are listed in Section 6.1. Procedures for using user-defined
algorithm codepoints are also described in Section 6.1.
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 The following algorithms are defined in this specification for user plane confidentiality.

Algorithm Normative Reference
DES (56 bit effective key) [6]
DES40 (40 bit effective key) Section 6.7
Triple DES (112 bit effective
key)

[25]

FEAL (64 bit key, no key
block parity, N=32)

[32], [33]

The following modes of operation are defined in this specification for user plane confidentiality.

Mode Normative Reference
Cipher Block Chaining (CBC) [7]
Counter Mode Section 6.3
Electronic Codebook (ECB) [7]

Counter Mode is not self-synchronizing. Therefore, it is necessary to maintain synchronization of
cryptographic state between the encrypting and decrypting security agents. This is accomplished via the
OAM cells as described in Section 6.4.

This specification provides a mechanism for changing session keys for the confidentiality service. This
mechanism is described further in Section 5.3.

3.2.3.  Bypass of Special Network Cells

Because the Data Confidentiality service is defined at the ATM layer, it is necessary to clarify its operation
with respect to special network cells, that is, cells other than user data cells.  Because these special cells, i.e.
OAM cells or RM cells, are interpreted by intermediate nodes in the network, they must be excluded by the
encryption process.  Otherwise they would be rendered meaningless, as it is not possible or desirable to
have these intermediate nodes involved in the encryption process.  To this end the following shall apply:

• For Virtual Channel Connections (VCCs), cells with a Payload Type Indicator (PTI) field of 1xx
(binary) shall bypass the encryption process, and be transmitted in clear (where “x” in the PTI means
don’t care).  In addition, unless specifically defined herein, these cells shall not change the
cryptographic state of the security agent.

• For Virtual Path Connections (VPCs), cells with a Virtual Channel Identifier (VCI) field with the
following values: 3, 4, and 6-15 shall bypass the encryption process and be transmitted in clear.  In
addition, unless specifically defined herein, these cells shall not change the cryptographic state of the
security agent.

3.3. Data Origin Authentication and Integrity

3.3.1. Integrity Reference Model

Data integrity is provided by means of cryptographic checksums (also known as hash codes, message
authentication codes [MACs], and message digests) appended to AAL 3/4 and AAL 5 “Common Part”
service data units (SDUs).  Data integrity service is available only for virtual channels, not for virtual paths.
If provided, ATM data integrity shall be on a per-VCC basis.  This means that
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• Integrity protections do not apply to VPCs.
• Checksums are applied to the sequence of Common Part SDUs in a VCC.
• The decision to provide integrity or not is determined on a VCC-by-VCC basis.
• For VCCs with checksums, integrity keys are determined (and may vary) on a VCC-by-VCC basis.

In terms of ATM architecture and layering, the data integrity function takes place at the AAL. Other
approaches to data integrity are outside the scope of this document.

As Sections 5.1.4 and 5.1.5 explain, there are two methods specified for negotiating security services:
signaling-based and in-band.  There are differences in the reference models for how the data integrity
service is provided for the two cases.

Figure 14 shows the object and layer reference models for the data integrity service in the case where
security messaging is signaling-based.  In this case, the SAsme is called by the control plane entity upon
receipt of, or prior to sending, all messages. As explained above, the data integrity function of SAservice is
logically part of the AAL entity, because MACs are applied on a per-VCC basis

The object and layer reference models for the case where security messaging is in-band (Figure 15) is
similar to the signaling-based model except for the placement of the SAsme.  For the in-band case, the SAsme

would move out of the control plane entity, as shown in Figure 15.  Otherwise the object interactions are as
for the signaling-based case.
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3.3.2. Integrity  Infrastructure and Mechanisms

The data integrity mechanism supports data integrity for the “Common Part” AAL SDU in AAL type 3/4
and AAL type 5 for user data on a per VCC basis. The VCC may be a switched VCC (i.e., SVC) or a
permanent VCC (i.e., PVC).
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The data integrity service is provided with two options: 1) data integrity without replay/reordering
protection, and 2) data integrity with replay/reordering protection. The option to be used for a connection
may be negotiated at the time the connection is established.

When data integrity is provided without replay/reordering protection, the source appends a cryptographic
signature, commonly referred to as message authentication code (MAC), to the tail of each Common Part
AAL-SDU before transmitting it, as shown in Figure 16. The signature is computed over the Common Part
AAL-SDU.

At the destination, when a Common Part AAL-SDU is received, the security agent verifies the signature. If
the signature does not check, it simply discards the AAL-SDU.

When data integrity is provided with replay/reordering protection, the data integrity service provides
protection against replay and reordering attacks, so that “old” or “reordered” AAL-SDUs are detected and
discarded. At the source, this is achieved by first appending a sequence number to the tail of each Common
Part AAL-SDU and then computing a signature on the totality of the Common Part AAL-SDU including the
sequence number. This signature, which protects both the AAL-SDU and the sequence number, is then
appended to the total Common Part AAL-SDU (which includes the sequence number), as shown in Figure
16.

The sequence number is set to zero when the connection is established and each time the session key for
data integrity is updated (i.e., changed over). The sequence number is incremented with each AAL-SDU
that the source sends. The sequence number is a 6-byte number. The sequence number shall not wrap
around during the life of a session integrity key.

At the destination, when a Common Part AAL-SDU is received, the security agent verifies that the signature
is valid. If the signature is not valid, it discards the AAL-SDU. If the signature is valid, then it checks the
sequence number to ensure that it is valid.

The receiving security agent tests the sequence number as follows. When there is a previously received
valid Common Part AAL-SDU, then the sequence number associated with the current Common Part AAL-
SDU is valid only if it’s greater than the sequence number associated with the last valid Common Part
AAL-SDU received. When there is no previously received valid Common Part AAL-SDU, the sequence

a) Integrity without replay/reordering protection

Service Data Unit (SDU) Signature

Service Data Unit (SDU)

. . .ATM Cell ATM Cell ATM Cell

Service Data Unit (SDU) Signature

Service Data Unit (SDU)

. . .ATM Cell ATM Cell ATM Cell

Sequence Number

a) Integrity with replay/reordering protection

Figure 16.  AAL-SDU Level Data Integrity.
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number associated with the current Common Part AAL-SDU is accepted as valid. If the sequence number
fails these tests, the security agent discards the AAL-SDU.

The receiving security agent saves the sequence number associated with the last valid Common Part AAL-
SDU received to check the validity of the next Common Part AAL-SDU that it may receive.

3.3.2.1. Signature

The signature algorithm (or MAC) to be used for the connection’s integrity service is negotiated at the time
the connection is established.

Associated with each algorithm is a codepoint that is used for identification when negotiating security
options. These codepoints are listed in Section 6.1. Procedures for using user-defined algorithm codepoints
are also described in Section 6.1.

The following algorithms are defined in this specification for user plane integrity.

Algorithm Normative Reference
HMAC-MD5 [11], [12]
HMAC-SHA-1 [11], [8]
HMAC-RIPEMD-160 [11], [18]
DES/CBC MAC [17], [6], Section 6.6
DES40/CBC MAC  Section 6.6, Section 6.7
Triple DES/CBC MAC [25], Section 6.6
FEAL/CBC MAC [32], [33], Section 6.6

As with the confidentiality service, this specification provides a mechanism for changing session keys for
the integrity service. This mechanism is described further in Section 5.3. Note, however, that because SKC
OAM cells may not arrive on SDU boundaries, key changeover for data integrity that does not consider
SDU boundaries may result in data loss.

3.4. Access Control

3.4.1. Access Control Reference Model

Access control is provided on a per-VC basis. In general, access control is performed during connection
establishment based on information contained in the security message exchange and network configuration
parameters.

As Sections 5.1.2 and 5.1.5 explain, there are two methods specified for negotiating security services:
signaling-based and in-band. For both of these methods, there are differences in the reference models for
how the access control is described below.

Figure 17 shows the access control layer reference model for the access control service in the case where
security messaging uses the signaling-based method of negotiating security services.  In this case, the SAsme

is logically part of the control plane entity.
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The access control layer reference model for the in-band method of negotiating security services (Figure 18)
is similar to the signaling-based model except for the placement of the SAsme.  For the in-band case, the
SAsme would move out of the control plane entity, as shown in Figure 18.  Otherwise, the interactions are the
same as for the signaling-based case.
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Figure 18.  Access Control Layer Reference Model for In-band-Based Messaging.

3.4.2. Access Control Infrastructure and Mechanisms

Associated with each mechanism is a codepoint that is used for mechanism selection when negotiating
security options. These codepoints are not listed here, but rather in Section 6.1. Procedures for using user-
defined algorithm codepoints are also described in Section 6.1.

Access control data is sent in the initial exchange between security agents so that access control decisions
can be made, as necessary, at each ATM component in the connection path during connection
establishment.

The following algorithms are defined in this specification for user plane access control.

Algorithm Normative Reference
Standard Security Label [10]

Section 7.2 provides additional information on the use of security labels within an ATM network.

3.4.3. Error Processing

If an error prevents establishing a connection, an error message shall be returned to the calling party to
enable connection tear-down along the path of the connection setup according to the error processing



ATM Security Specification, Version 1.0 af-sec-0100.001

ATM Forum Technical Committee Page 37

procedures described in Sections 5.1.4 and 5.1.5. The amount of diagnostic information provided in the
Cause Information Element shall be configurable.
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4. Security Services for the Control Plane

4.1. Control Plane Data Origin Authentication and Data Integrity

For Version 1.0 of this specification, Control Plane data origin authentication and data integrity are
accomplished in a hop-by-hop manner between adjacent signaling elements. Figure 19 shows the reference
model for this service. This service is accomplished by applying the user plane data origin authentication
and integrity service (Section 3.3) to the Signaling AAL (SAAL) SDU connecting two signaling entities.

ATM

Phy

Signaling

SAAL

ATM Forum Signaling 4.x

integrity

Physical Link
ATM

Phy

Signaling

SAAL
integrity

Figure 19.  Control Plane Data Origin Authentication and Integrity Layer Reference Model.

The particulars for the Control Plane data origin authentication and integrity service are as follows:

The provision of control plane data origin authentication and data integrity and the algorithms and
parameters required to effect this service are not dynamically negotiated; rather, management prearranges
them.  See Section 3.3.2.1 for a list of the signature algorithms that may be used and Section 6.2.3.2 for the
parameters needed to operate those algorithms.

The control plane data origin authentication and data integrity service shall support session key update. The
provision of session key update and the algorithms and parameters required to effect it are not dynamically
negotiated; rather, management prearranges them.  See Section 5.3 for a list of the signature algorithms that
may be used and Section 6.2.3.6 for the parameters needed to operate those algorithms.

The two ends of the signaling channel shall be preconfigured with a shared secret master key and initial
session key. Session key updates may take place according to the procedures in Section 5.3.

The control plane data origin authentication and data integrity service shall always use the “data integrity
with replay/reordering protection” option.

The mechanisms that provide Control Plane data origin authentication and data integrity service are
identical to those described in Section 3.3.2 with the following exception:

The Control Plane data origin authentication and data integrity service operates at the SAAL SDU
level rather than at the AAL5 common part SDU level.
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Thus, the Control Plane data origin authentication and data integrity service operates “above” the SAAL
and “below” the signaling protocol. For outgoing signaling messages, sequence numbers and signature
fields are added to the SAAL SDU. For incoming signaling messages, the fields are removed from the SDU
and processed by the SAservice before the signaling messages are passed to the signaling entity for further
processing.

4.1.1. Error Conditions

If the two endpoints of a signaling channel are not compatibly configured, the SSCOP connection will never
be established, so no signaling messages will ever pass between the two entities.  If the AAL5 SDU is
modified in transit, it will be discarded as defined in Section 3.3, and SSCOP will retransmit.
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5. Support Services
This section describes the mechanisms that are required to support the security services described in Section
3 and Section 4. Specifically, the following support services are addressed in this section:

• Security message exchange protocols and basic negotiation,
• Security messaging in the control plane,
• Security messaging in the user plane,
• Key exchange,
• Session key update,
• Certificates.

In order to negotiate parameters for the security services described in Section 3, and to directly support the
entity authentication service described in Section 3.1, a set of security message exchange protocols is
required. These protocols are described in Section 5.1 and are summarized below.

The three-way security message exchange protocol described in Section 5.1.1.1 may be used for
establishing a point-to-point connection, as well as for the first leaf in a multipoint call. This protocol is
used for connections that require negotiation of security options. The three-way exchange has the advantage
that it does not use timestamps, and therefore does not require synchronization.

The two-way security message exchange protocol described in Section 5.1.1.2 may also be used for
establishing a point to point connection or a point to multipoint connection. This protocol is used for
connections that do not require negotiation of security parameters, and for adding leaves to multipoint calls.
The disadvantage of the two-way exchange protocol is that it requires time synchronization between the
party that generates the security information and the party that validates the security information.

This specification defines two mechanisms for transporting security information. These are the signaling-
based security message exchange mechanism (described in Section 5.1.2) and the in-band security message
exchange mechanism (described in Section 5.1.5). In both cases, the Security Services Information Element
(described in Section 5.1.5.3.6) is used to carry the security information.

The method for performing the two-way exchange protocol in Signaling 4.0 flows is described in detail in
Section 5.1.2. (The three-way message exchange protocol is not supported in Signaling 4.0 in this
specification.)

For point-to-multipoint connections after the first leaf is established, subsequent leaves are added with a
two-way security message exchange. This is because negotiation of security options may be performed only
when establishing the first leaf—subsequent leaves must accept the options that the root and the first leaf
agreed upon.

The method for performing the two-way and three-way message exchange protocols in the user plane
VCC/VPC is described in detail in Section 5.1.5. This method applies to both SVCs and PVCs. In order to
provide a reliable transport service for inband message flows, an inband message exchange protocol is
defined in Section 5.1.5.3. As with the signaling-based approach, this protocol uses the Security Services
Information Element to convey security-related parameters.

PVCs (permanent virtual connections) are provisioned connections. Security services negotiation,
authentication, certificate exchange, and key exchange can be done via provisioning at the time PVCs are
established, or inband as described in Section 5.1.4.4.  Once security services for PVCs are established, the
data confidentiality and data integrity services for PVCs are provided the same way as they are provided for
SVCs.  Likewise, session key update (for data confidentiality and data integrity services) for PVCs is done
the same way as it is done for SVCs.
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When a SVC or PVC is established, confidentiality and/or integrity (data origin authentication) keys need to
be exchanged in order to provide these services. In order to prevent “man in the middle” attacks, key
exchange must be accompanied by strong authentication between the user endpoints, as addressed in
Sections 5.1.1.1 and 5.1.1.2. Other details associated with the key exchange service are described in Section
5.2.

Once confidentiality and/or integrity keys are exchanged, there is no need for security message exchanges in
the middle of connection after the connection is established. However, session keys for these services must
be changed periodically. Section 5.3 describes the key update mechanism (for the data confidentiality and
data integrity services), which is performed by exchanging a “master key” at the connection setup time and
then exchanging subsequent “session” keys under the master key. Session key update messages are
exchanged using OAM cells.

Section 5.4 describes the certification infrastructure and mechanisms for transporting certificates and
certificate chains. These certificates can be exchanged during the three-way security message exchange
protocol, or through some other means that is outside the scope of this specification (e.g. directory servers).

5.1. Security Information Exchange

5.1.1. Security Message Exchange and Negotiation Protocols

The two-way and three-way user plane security message exchange protocols are not dependent on the use of
any particular cryptographic algorithm and are based on the “strong authentication” procedures of the
ISO/IEC 9594-8 asymmetric (public) key-based authentication and the ISO/IEC 11770-2 symmetric (secret)
key-based authentication. Both protocols provide the following functions:

• Unilateral authentication,
• Mutual authentication,
• One- or two-way key exchange.

 The three-way message exchange protocol provides the following additional functions:

• Certificate and Certificate Revocation List (CRL) exchange,
• Negotiation of security services and options.

In the two- and three-way security message exchange protocols, one user of the protocol assumes the
“initiating” role and the other remote user assumes the “responding” role.

When setting up a point-to-point connection or when setting up the first leaf of a point-to-multipoint
connection, the initiator has the option to use either the two-way security message exchange protocol or the
three-way security message exchange protocol. When setting up subsequent leaves in a point-to-multipoint
connection, the initiator can only use the two-way security message exchange protocol.

The following table shows the symbols and abbreviations used throughout the discussion of two- and three-
way security message exchange protocols:

X Entity X distinguished name (ID). Authentication requires that the entity to be
authenticated have a distinguished name (ID) and an associated key. So, X
represents the ID of the authentication entity.

KX When X uses an asymmetric (public) key algorithm (such as RSA), KX

represents the public or private component of X’s asymmetric key. When X
uses a symmetric (secret) key algorithm (such as DES), KX is X’s symmetric
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(secret) key.

Enc textKX
( ) Encryption of text under X’s key. When X uses an asymmetric (public) key

algorithm (such as RSA) for encryption, KX is the public component of X’s
asymmetric key. When X uses a symmetric (secret) key algorithm (such as
DES) for encryption, KX is X’s symmetric (secret) key.

Sig Hash textKX
( ( )) X’s digital signature computed over the hash of text under X’s key. When X

uses an asymmetric (public) key algorithm (such as RSA) for digital signature,
KX is the private component of X’s asymmetric key. When X uses a symmetric
(secret) key algorithm (such as DES) for digital signature, KX is X’s symmetric
(secret) key.

Hash(text) One-way hash of text, where Hash is a strong one-way hash function such as
MD5.

RX Random number (nonce) generated by X.

TX Tx = (Timex, Seqx ), time-variant timestamp generated by X. The time stamp is

a combination of two values (Timex, Seqx).  Timex, is a 4-byte coordinated
universal time, the Greenwich Mean Time (GMT) at which the signature was
generated. This is the binary encoding of the number of seconds since 00:00:00

GMT on January 1, 1970 (same as UNIX time). Seqx is a 4-byte sequence
number that is incremented with each authentication flow that is sent to the

same destination with the same Timex value. When the Timex value changes,

Seqx is reset to 0.

{.} Optional token. A token included in {.} is only needed when the specific
security service that requires it is invoked. For example, {ConfPar} is present
only if the key exchange service is required for the connection.

SecOpt In the two-way security message exchange protocol, the initiator uses the
SecOpt token to indicate to the responder what security services are to be
provided for the connection. SecOpt carries the security services, options, and
parameters requested for the connection. This includes the type of security
services to be provided for the connection (e.g., authentication, data
confidentiality, etc.) and the algorithms/modes of operation to be used for each
security service (e.g., authentication using DSA; key exchange using Diffie-
Hellman; data confidentiality using DES in CBC mode, etc.). Additionally,
SecOpt includes the parameters associated with each selected algorithm/mode
of operation (e.g., initialization vector for CBC mode).

SecNeg_ In the three-way security message exchange protocol, the “initiator” and
“responder” use SecNega and SecNegb to negotiate the security services,
options, and parameters for the connection. The initiator presents to the
responder the following information using the SecNega token: 1) The security
services (e.g., authentication, data confidentiality, etc.) to be provided for the
connection and any other security service that will be provided for the
connection should the responder request it. 2) For each security service that the
initiator has requested and any other security service that will be provided for
the connection should the responder request it, the initiator specifies one or
more sets of options for each service. Options should be presented in order of
preference, with the highest preference option first and the lowest preference
option last. The responder must select the first compatible option presented to
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it. The responder can only select one of the options presented to it. For
example, for data confidentiality, the initiator may indicate Triple-DES as first
choice and FEAL as second choice.  For authentication hash algorithm, the
initiator may indicate MD5 as first choice and no other choices.  For
authentication signature algorithm, the initiator may indicate DSA as first
choice and RSA as second choice, etc. 3) The parameters associated with each
option (for example, initialization vector for DES in CBC mode). When the
responder receives these three pieces of information (i.e., items 1-3) from the
initiator, it makes its selection from the list of options presented to it and
communicates that to the initiator through the SecNegb token, if the options
presented to it are satisfactory. The connection setup can proceed only if the
security negotiation step is successful, otherwise the connection setup will fail.

ConfPar_ When the key exchange support service option is invoked, ConfPara is used to
securely carry the initiator’s keys from the initiator to the responder. ConfPara

contains: 1) the initiator’s master key, 2) the initiator’s first session key for the
data confidentiality service when the data confidentiality service is requested
for the connection, and 3) the initiator’s first session key for the data integrity
service when the data integrity service is requested for the connection.
Similarly, ConfParb is used to securely carry the responder’s keys from the
responder to the initiator. ConfParb contains: 1) the responder’s master key, 2)
the responder’s first session key for the data confidentiality service when the
data confidentiality service is requested for the connection, and 3) the
responder’s first session key for the data integrity service when the data
integrity service is requested for the connection.

Cert In the three-way security message exchange protocol, when the certificate or
certificate revocation list (CRL) exchange support service option is invoked,
Certa is used to carry the initiator’s certificate or CRL chain from the initiator
to the responder and Certb is used to carry the responder’s certificate or CRL
chain from the responder to the initiator.

The formats of these tokens are defined in Section 6.1.

In the following discussion, when an asymmetric (public) key algorithm is used, it is assumed that each
authentication entity (i.e., A and B) possesses a public/private key pair. Ka represents the public component
of A’s asymmetric key when it’s used for encryption. Ka represents the private component of A’s
asymmetric key when it’s used for digital signature. Similarly, Kb represents the public component of B’s
asymmetric key when it’s used for encryption. Kb represents the private component of B’s asymmetric key
when it’s used for digital signature.

In the following discussion, when a symmetric (secret) key algorithm is used, it is assumed that the
authentication entities A and B share two uni-directional secret keys Ka and Kb, or a single secret key Ka =
Kb.

Note: the generation, distribution, and storage of the secret, private, and/or public keys is outside the scope
of this specification.

5.1.1.1. Three-Way Security Message Exchange Protocol

Figure 20 shows the three-way security message exchange protocol. This protocol supports both asymmetric
and symmetric key algorithms.
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When authentication or key exchange is invoked, this protocol uses a nonce-based mutual authentication
method. As a result, A gets authenticated to B and B gets authenticated to A. However, note that A is not
authenticated to B until FLOW3-3WE is received and checked.

This protocol involves the following steps, and is implemented in the In-Band Security Message Exchange
Protocol, described in Section 5.1.5.3. If an error occurs during processing of this protocol, then the error
procedures described in Section 5.1.5.3 shall apply.

1. A sends FLOW1-3WE (which contains the following required tokens: A, Ra, and SecNega) to B. When
certificate or CRL exchange is needed, Certa is also included in FLOW1-3WE.

FLOW1-3WE: A B♦
A B R SecNeg Certa a a,{ }, , ,{ }

2. When B receives FLOW1-3WE, it carries out the following actions:

• Checks that B itself is the intended recipient, when B is included.

• Extracts SecNega and interprets it for its reply.

• When authentication or key exchange is required

⇒ Extracts the nonce Ra for its reply.

⇒ Extracts Certa if present and verifies its validity.

 3. B sends FLOW2-3WE (which contains the following required tokens: A, B, and SecNegb) to A. When

authentication or key exchange is required, the authentication token (i.e., {Ra, Rb,,...}) is included in the
flow. When key exchange is needed, ConfParb is also included in FLOW2-3WE. When certificate or
CRL exchange is needed, Certb is also included in FLOW2-3WE.

FLOW2-3WE: B A♦
A B SecNeg Cert R R Enc ConfPar Sig Hash A B R R SecNeg SecNeg ConfParb b a b k b k a b a b ba b

, , ,{ },{ , ,{ ( )}, ( ( , , , , , , { }))}

 4. When A receives FLOW2-3WE, it carries out the following actions:

• Checks that A itself is the intended recipient.

• Extracts SecNegb and interprets it.

• When authentication or key exchange is required

⇒ Verifies the signature, and thus the integrity of both FLOW1-3WE and FLOW2-3WE.

⇒ Checks that the received Ra in FLOW2-3WE is identical to the one that sent in FLOW1-3WE.

⇒ Extracts the nonce Rb for its reply.

⇒ Extracts ConfParb if present and interprets it.

⇒ Extracts Certb if present and verifies its validity.
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 5. When authentication or key exchange is required, A sends FLOW3-3WE (which contains the following
required tokens: A, B, Rb,...) to B. When key exchange is needed, ConfPara is also included in FLOW3-
3WE.

FLOW3-3WE: A B♦
{ , , ,{ ( )}, ( ( , , ,{ }))}A B R Enc ConfPar Sig Hash A B R ConfParb k a k b ab a

 6. When B receives FLOW3-3WE, it carries out the following actions:

• Checks that B itself is the intended recipient.

• When authentication or key exchange is required

⇒ Verifies the signature, and thus the integrity of FLOW3-3WE.

⇒ Checks that the received Rb in FLOW3-3WE is identical to the one that sent in FLOW2-3WE.

⇒ Extracts ConfPara if present and interprets it.

5.1.1.2. Two-Way Security Message Exchange Protocol

Figure 21 shows the two-way security message exchange protocol. This protocol supports both asymmetric
and symmetric key algorithms.

When authentication or key exchange is invoked, this protocol uses a timestamp and nonce-based mutual
authentication method. As a result, A gets authenticated to B, and B gets authenticated to A.

This protocol involves the following steps, and is implemented within UNI 4.0 signaling, as described in
Section 5.1.4. If an error occurs during processing of this protocol, then the error procedures described in
Section 5.1.4 shall apply.

1. A sends FLOW1-2WE (which contains the following required tokens: A, B, and SecOpt) to B. When
authentication (initiator -> responder) or key exchange is required, the authentication token (i.e.,
{Ta,Ra,...}) is included in the flow. When key exchange is needed, ConfPara is also included in
FLOW1-2WE. When certificate or CRL exchange is needed, Certa is also included in FLOW1-2WE.

FLOW1-2WE: A B♦
A B SecOpt Cert T R Enc ConfPar Sig Hash A B T R SecOpt ConfPara a a k a k a a ab a

, , ,{ },{ ,{ ( )}, ( ( , , , , ,{ }))},

2. When B receives FLOW1-2WE, it carries out the following actions:

 

A B SecNeg Cert R R Enc ConfPar Sig Hash A B R R SecNeg SecNeg ConfParb b a b K b K a b a b ba b
, , ,{ },{ , ,{ ( )}, ( ( , , , , , ,{ }))}

A B R SecNeg Certa a a,{ }, , ,{ }

{ , , ,{ ( )}, ( ( , , ,{ }))}A B R Enc ConfPar Sig Hash A B R ConfParb K a K b ab a

FLOW2-3WE

[Responder]
B

FLOW1-3WE

[Initiator]
A

FLOW3-3WE

 Figure 20.  Three-Way Security Message Exchange Protocol.
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• Checks that B itself is the intended recipient.

• Extracts SecOpt and interprets it.

• When authentication or key exchange is required

⇒ Verifies the signature, and thus the integrity of FLOW1-2WE.

⇒ Checks that the timestamp is fresh and that the flow is not a replay or out-of-order.

⇒ Extracts the nonce Ra for its reply.

⇒ Extracts ConfPara if present and interprets it.

⇒ Extracts Certa if present and verifies its validity.

 3. When authentication (responder -> initiator) or key exchange is required, B sends FLOW2-2WE
(which contains the following required tokens: A, B, Ra,...) to A. When key exchange is needed,
ConfParb is also included in FLOW2-2WE. When certificate or CRL exchange is needed, Certb is also
included in FLOW2-2WE.

FLOW2-2WE: B A♦
{ , , ,{ },{ ( )}, ( ( , , ,{ }))}A B R Cert Enc ConfPar Sig Hash A B R ConfPara b k b k a ba b

 4. When A receives FLOW2-2WE, it carries out the following actions:

• Checks that A itself is the intended recipient.

• When authentication or key exchange is required

⇒ Verifies the signature, and thus the integrity of FLOW2-2WE.

⇒ Checks that the received Ra in FLOW2-2WE is identical to the one which sent in FLOW1-
2WE.

⇒ Extracts ConfParb if present and interprets it.

⇒ Extracts Certb if present and verifies its validity.

The use of timestamp, TA = (TimeA, SeqA), will need to have three properties: 1) Freshness: the receiver is
assured that the received flow has been originated within a specified range of the receipt time. 2)
Uniqueness: the receiver is assured that the received flow has never been received before from the same

 

{ , , ,{ ( )}, ( ( , , ,{ }))}A B R Enc ConfPar Sig Hash A B R ConfPara K b K a ba b

A B SecOpt T R Enc ConfPar Sig Hash A B T R SecOpt ConfPara a K a K a a ab a
, , ,{ , ,{ ( )}, ( ( , , , , ,{ }))}

FLOW2-2WE

[Responder]
B

FLOW1-2WE

[Initiator]
A

 Figure 21.  Two-Way Security Message Exchange Protocol.
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sender. 3) Ordering: the receiver is assured that the received flow has not been originated before a
previously received flow from the same sender.

When the initiator generates TimeA for FLOW1-2WE, it determines whether its value is greater than the

TimeA used in the previous FLOW1-2WE sent to this destination. If current TimeA is the same as the

previous one, then the initiator increments SeqA. Otherwise, it resets SeqA to 0.

When the responder receives a FLOW1-2WE from a source, it checks whether it has received another
FLOW1-2WE from this source within a time-out period W.

If the responder has received another FLOW1-2WE from the same source within the time-out period W, it

compares TimeA values to ensure that the TimeA in the recently received flow is greater than the TimeA in

the previously received flow. If they are the same, then it checks that SeqA is greater than the previous one
received from this source. If the timestamp fails these tests, then the authentication fails and the information
is discarded.

If the responder has not received another FLOW1-2WE from the same source within the time-out period W,

then it checks to ensure that TimeA is within time W of its (the responder’s) current local clock. If the
timestamp fails this test, then the authentication fails and the information is discarded. This implies that the
initiator and responder must be synchronized within the time period W.

When the timestamp test succeeds, the responder saves the timestamp and holds it for W seconds.

The value of the time-out period W is an implementation parameter and need not be specified here. The
larger the W is, the higher is the clock drift tolerance. But a larger W requires more storage for timestamps.

5.1.2. Label Transport

Label Based Access Control uses a uni-directional security protocol between two ATM Security Agents,
separate from the Security Message Exchange. Labels are transported in the SSIE (described in Section
5.1.3) using either the signaling-based or in-band mechanism. When labels are provided in signaling, any
security agent that is involved in the connection SETUP or CONNECT message can make an access control
decision based on the contents of the label. Because of this, the label is generally not discarded by the
security agent that inspects the label. When labels are passed in-band, the security agents who receive the
in-band exchange can enforce the access control policy.

5.1.3. Security Services Information Element

The Security Services Information Element (SSIE) is the principal communication method used by ATM
Security Agents to establish security services for ATM VCs during ATM Call Establishment.

The SSIE is designed to provide direct support for transporting security information in signaling and within
the user plane connection. This provides direct support for the Security Message Exchange Protocol
described in Section 5.1, along with support for other exchange mechanisms.
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The SSIE is designed to provide support for the security model outlined in this specification.  The SSIE
provides direct support for:

1.  Signaling-based Security Message Exchange.
2.  In-band Security Message Exchange.
3.  Multiple Nested Security Services.
4.  Proxy Security Agents.
5.  User Plane Security Services.

The SSIE is composed of a Security Service Information Element header and any number of Security
Association Sections (SAS).  Each SAS contains the information needed to establish and maintain the
security associations needed to provide a security service.  In order to accomplish this, each section
identifies the security service that is being established or maintained, specifies the security agent, and
specifies the relative security context to which the section pertains.

5.1.3.1. Security Services Information Element Format

This specification relies on the Security Services Information Element (SSIE), which is specified in the UNI
Signaling 4.0 Security Addendum [4] for octets 1-4. The use of SSIE octets 5, etc. are specified in the
following section.

5.1.3.2. Security Association Section

The Security Association Section provides the information needed to establish a single security service
association between two ATM security agents.

Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Association Service Identifier 5 (Note)
Security Association Section Length 5.1 (Note)

Security Association Section Length (cont.) 5.2 (Note)
Version Transport Ind. Flow Indicator Discard 5.3 (Note)

Scope 5.4 (Note)
Scope 5.5 (Note)

Relative ID 5.6 (Note)
Relative ID 5.7 (Note)

Target Security Entity Identifier 5.8* (Note)
Security Service Data 5.9* (Note)

Note: Octet group 5 can be repeated to form new octet groups numbered sequentially as octet groups 6, 7,
… N.

When an SSIE is used within Signaling Support for Security Message Exchange, the total length of the
SSIE, including all SASs, is limited in [4] and [5].Coding details for these octets are defined below.
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5.1.3.2.1.  Security Association Service Identifier

This octet identifies the Security Association Service type for this SAS.

Bits
8 7 6 5 4 3 2 1 Octet

Security Association Service Identifier
User Security Association Service Type 5

User Specified Security Service Identifier (User)

8 Meaning
0 ATM Forum Specified Security Service
1 User Specified Security Service Type (Note)

Note: If this bit is set (1), then bits 1-7 are encoded with a user-specified codepoint. If this bit is
cleared (0) to indicate ATM Forum Security Service, then the following Security Association
Service Types apply:

Security Association Service Type

7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   1 Security Message Exchange
0   0   0   0   0   1   0 Label Based Access Control

[all other codepoints reserved]

5.1.3.2.2.  Length of Security Association Section

This 16-bit octet group is the length of this Security Association Section, excluding the Security Service
Identifier byte, and the SAS length bytes, bytes, 5.1-5.2.  The minimum length of a SAS is 8 bytes, and so
the minimum value for this field is 3.

Bits
8 7 6 5 4 3 2 1 Octet

Length of Security Association Section 5.1
Length of Security Association Section (cont.) 5.2

Length of Security Association Section

This is a 16 bit binary value.
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5.1.3.2.3. Version

These 3 bits denote the specification to which this specific SAS type is compliant.

Bits
8 7 6 5 4 3 2 1 Octet

Version 5.3

Version

8   7   6 Meaning
0   0   0 Version 1.0 Security Service

5.1.3.2.4. Transport Indicator

This field provides the security agents a means of indicating what transport method will be used to
exchange the indicated Security Information Exchange Protocol for this security service.  The format of this
field is indicated below.

Bits
8 7 6 5 4 3 2 1 Octet

Transport Ind. 5.3

Transport Indicator

5   4 Meaning
0   0 Signaling
1   1 In-Band Messaging

The transport method is a negotiable parameter, developed during ATM call establishment.  The initiating
security agent must specify its preferred method for exchanging security information in the Initial Security
Service SAS.  Intermediate and responding security agents can modify this field to indicate that the
transport method must change in order to accommodate conditions in the network. Intermediate and
responding security agents may also modify this field from Signaling to In-Band messaging if they are
unable to continue the SME protocol in signaling. Security agents may NOT, however, modify this field
from In-Band to Signaling.
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5.1.3.2.5.  Flow Indicator

This field is used to identify the flow number of the Security Information Exchange for this Security
Association Section. The format of this field is indicated below.

Bits
8 7 6 5 4 3 2 1 Octet

Flow Ind. 5.3

Flow Indicator

3   2 Meaning
0   0 First Flow
0   1 Second Flow
1   0 Third Flow
1   1 Fourth Flow.

The Flow Indicator field declares the flow number of the Security Information Exchange Protocol that the
SAS is supporting.  When the Flow Indicator is zero (0), the SAS represents the initiation of a new security
service, and generally indicates to the responding security agent that a new security association is being
requested.  When signaling is the SME Transport, all SAS’s with zero Flow Indicator values must be
introduced in the call’s SETUP message.  Any SAS’s with the Flow Indicator set to zero in the CONNECT
message will be treated as processing errors.

The Flow Indicator is used by security agents to indicate what fields in the SAS message header should be
used for scoping.  A zero value for the Flow Indicator indicates that this SAS is initiating a security service.

The Flow Indicator field has relevance to other fields in the SAS.  When the Flow Indicator is zero (0), the
Scope field is used by receiving security agents to determine if the SAS is relevant to this security agent.  A
non-zero value for the Flow Indicator indicates that this SAS is part of an ongoing Security Message
Exchange Protocol session, and the Relative ID is significant to both peers.  As a result, when the Flow
Indicator is non zero, security agents will use the Relative ID field as a Security Association ID to indicate
that this particular SAS is significant to the receiving security agent.

5.1.3.2.6.  Security Association Section Discard Indicator

This indicator specifies whether a security agent will discard the SAS after processing.  The format of this
field is indicated below.

Bits
8 7 6 5 4 3 2 1 Octet

Discard 5.3

Discard Indicator

1 Meaning
0 Do Not Discard SAS After Processing.
1 Discard SAS After Processing.

The discard bit is used to specify if the SAS should be discarded after processing.  Most SASs will have this
bit set (1).  Clearing this bit to (0) allows an initiating security agent to pass an SAS to multiple security
agents along the VC path.
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In this specification, this bit shall be set (1) when this SAS is used for any services other than label-based
access control. This bit may be cleared (0) for Label-Based Access Control when it is intended that the label
be presented to all appropriate security agents along the VC path.

5.1.3.2.7.  Scope

These octets describe the intended scope of the security services association, providing an implicit
identification of the responding security agent for which this SAS is relevant.  The format of this field is
indicated below.

Bits
8 7 6 5 4 3 2 1 Octet

Scope
Region 5.4

Explicit Local Remote Transit Reserved Reserved Reserved Reserved
Role 5.5

User EB N/L Reserved Reserved Reserved Reserved Reserved

In the path of any given VC, a number of security agents may be at work, depending on the security policies
of the involved administrative domains.  An ATM User may need to establish peer security associations
with a number of security agents in the intended VC’s path.   As an example, the end system may be
required to authenticate to its “first hop” switch, authenticate to a remote network security agent, and
support confidentiality security services “end-to-end” before a VC can be established between the calling
and called parties.  In addition, other security services may also be employed along the VC path that are not
known to the calling party; specified by local, intermediate, or remote administrative domains.  An example
of this would be enterprise-to-enterprise encryption.

Because there are no assurances that SSIE SASs are kept in order as signaled messages are propagated
through the network, a specific mechanism is needed to indicate which peer security agent is supposed to
act on a specific SSIE SAS.  To support nested security services, the SAS message header provides both
explicit and non-explicit security peer specifications.

5.1.3.2.7.1.  Explicit Security Peer Specification

With explicit peer specification, security agents are explicitly referenced by a Security Entity Identifier that
is unique along the VC’s path.  A receiving security agent takes action on an explicitly directed SSIE SAS,
only when the Security Entity Identifier references THIS particular security agent, or in the case of a proxy
security agent, where the proxy is acting on behalf of the security entity explicitly identified in the SSIE
SAS.

When explicit peer specification is being used, the Explicit bit (8) of the Region field is set (1), and bits 7-1
are all zero (0).

The explicit security peer specification mechanism is not designed to provide any assurances with regard to
entity authentication.  This mechanism is simply intended to provide assistance in transporting the SSIE
SAS to its intended security agent.  It is expected that if authentication of the peer security agent is required,
then the appropriate SSIE SAS type has been employed that provides the mechanisms required assuring
peer security agent identification.
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5.1.3.2.7.2.  Non-Explicit Security Peer Specification

Non-explicit peer specification provides the initiating security agent with a method to specify the Region
and the Role of the intended responder.  This can be used to direct SSIE SASs to specific agents, in the
absence of explicit mechanisms.

The identifiers that are available for specifying security agents are broken into two categories.  The first is
the Region, which can be Local, Remote or Transit. The second category is Role which specifies if the
security agent is providing security for the User, an Enterprise Border (EB), or Network or Link (N/L)
security for the links internal to a network for some portion other than the enterprise border.

In support of this function, security agents should have a description of the Region and Role that the
security agent plays, relative to other security agents in the network.  This may take the form of explicit
assignment of Regions and Roles, along with the required supporting data.  Region assignments can be
satisfied by providing the network address prefix for the local network that a security agent is acting in.
Role assignments may be derived from the port type that a signaled message was received from.  The actual
management of security agent Region and Role descriptions is a vendor implementation issue.

The intent is that if any Region or Role bit is set, then the initiating security agent is requesting that
potential peer security agents should perform the indicated test.  In order for an IE to fall within the scope
of a particular security agent, both a Region test AND a Role test must be TRUE.  If all Region or Role
bits are cleared (0), which indicates that the initiating security agent does not indicate the tests to be
performed, then the respective Region or Role test returns TRUE.  If any Region bits are set, then the test
returns the resulting OR of each Region test indicated.  The same operation applies to the Role bits and
tests.

5.1.3.2.7.2.1.  Region

For simplicity the Region semantics are always interpreted relative to an ATM User initiating security
agent.  This means that the Calling and Called Party IDs are the reference for determining the intended
Region of a particular SSIE SAS.

Local

The security agent and the Calling Party are in the same network. When the Local bit is set (1) in the Scope
field, the security agent tests the Calling Party Address against the security agent’s local network prefix. If
there is a match, then the SSIE SAS falls within the scope of this security agent.

If the test fails, and the Local bit is the only Region bit set within the SAS, then the Security Agent (SA)
has the option, based on its security policy, of declaring the call in error, removing the SAS, or allowing the
SAS to remain in the SSIE. If the SA deems that the call is in error, the call is cleared and an appropriate
error cause code is returned.

If the Calling Party Address is not available, the test cannot be performed, and as a result, the Region test
returns TRUE.Remote

The security agent and the Called Party Address are in the same network.  When the Remote bit is set (1), in
the Scope field, the security agent compares the Called Party Address to the security agent’s local network
prefix.  If they are in the same network then the SSIE SAS falls within the scope of this security agent.

Transit

The security agent is neither in the Calling Party nor Called Party networks.  When the Transit bit is set (1)
in the Scope field, the security agent compares both the Calling and Called Party Addresses to the security
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agent’ s local network prefix.  If the security agent is not in either network, then the SSIE SAS falls within
the scope of this security agent.

5.1.3.2.7.2.2.  Role

A Security Agent (SA) can be located at different positions in the network, depending upon the security
policy and function that it is performing. SAs can be located at an end user device to protect and/or
authenticate the traffic to or from that device. In addition, SAs may be located at the border of a private
enterprise protecting or authenticating the traffic entering or leaving the enterprise. Finally, SAs may be
located at the border of a public enterprise protecting the traffic entering or leaving the public enterprise.
The actual type of interface (e.g., UNI and PNNI) that the SA is on is as relevant to a security policy as the
logical location or function that the SA is performing. The Role bits are defined as follows:

1. User - SA provides security for the user or end station.
2. Enterprise Border  (EB) - SA provides security services at the entrance or exit of an enterprise (public

or private).
3. Network/Link (N/L) - SA provides security services for the links internal to a network or for some

portion other than the enterprise border.

Examples of the use of the Role bit are provided below.  All bits are set to zero except where noted:

1. Targeting a security agent at the destination end user device:  Remote = 1, User = 1.
2. Policy may require that all calls leaving the local enterprise be authenticated. Targeting a security agent

at the local enterprise border: Local = 1, EB = 1.
3. Policy may require that a private enterprise authenticates calls to the public carrier network or that a

public carrier authenticates to another public carrier.  Targeting a call to the public carrier network:
Transit =1, EB =1.

4. An end station may need to request security services from a proxy SA acting on behalf of the user.
Targeting a security exchange with the local proxy SA: Local = 1, User = 1.

5. A node may request security services from the next node in the network. Targeting a security exchange
with the next node: Local = 1, N/L = 1.

6. The initiating SA may not know which type of responding SA will process the call.  In this case:
Remote = 1, User =1, EB = 1, N/L = 1.

5.1.3.2.7.3.  Relative ID Security Peer Specification

The previous methods are used by the initiating security agent to specify the intended responding security
agent at the time of security service initiation, i.e. when the Flow Indicator is zero (0).  During SETUP, the
security service association is binding to the Security Association ID that is being established.  This process
is described in detail in the next section.

In the development of a security association, the Security Message Exchange Protocol may be employed to
support a multi-flow communication between security agents.  The 2nd, 3rd and 4th messages needed to
support the 2 Flow, 3 Flow, and In-Band Security Message Exchange have, in this case, non-zero Flow
Indicator numbers.  With these messages, the Relative ID field is used to identify the appropriate Relative
Security Association ID.

When explicit security agent specification is not available, the Relative ID is used exclusively as an
identifier for a responding security agent’s security association.  When non-explicit mechanisms are being
employed, for flows other than flow one (1), all non-reserved bits in the Scope field (octet 5.4, bits 5-8, and
octet 5.5, bits 6-8) are set to one (1) and all other (reserved) bits in the Scope field are cleared to zero (0).

In conditions where the peer security agent’s explicit ID is known, the explicit scoping mechanism can still
be used to direct the SSIE SAS to the appropriate security agent.  This is indicated in the SSIE SAS where
the Region field has the Explicit bit set (1), bits 7-1 are zero, and an optional Target Security Entity
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Identifier is included in the message.  A receiving agent uses its explicit scoping methods to determine if it
is the intended security agent.  Because the Flow Indicator field is non-zero, the receiving agent uses the
Relative ID field to identify the specific security association that this SSIE SAS applies to.

5.1.3.2.8.  Relative Identifier

The Relative Identifier provides Security Association Identification and explicit Security Association
Section ordering.  The format of this field is indicated below

Bits
8 7 6 5 4 3 2 1 Octet

Relative ID
Security Association ID 5.6

SAS Number Reserved 5.7

Security Association ID (Octet 5.6.)

This octet represents the Security Association Identifier to which this Security
Association Section applies.

SAS Number (Bits 8-5 Octet 5.7.)

This nibble provides precedence order for SASs within an SSIE.  This is used to provide
explicit ordering of multiple SASs that are involved in the establishment of the same
service (have the same Security Association ID).

Reserved (Bits 4-1 Octet 5.7.)

This nibble is reserved for future use and shall be encoded to all zeros (0).

A security service is generally managed through the establishment of a security service association between
two security agents.  In the event that there are multiple security agents that are active on a single VC, or
when a single security agent is providing multiple security services, there is a need to support multiple
security associations within a given VC.

The Relative ID is used to identify the security association that a SSIE SAS belongs, and to provide a
means of specifying the order in which SSIE SASs will be processed within that association.  The
procedures developed around the Relative ID provide the mechanisms needed to support multiple nested
security services on a single VC.

The Relative ID is divided into two fields, the Security Association ID and the SAS Number.  Relative ID
numbers are assigned by initiating security agents, and SHALL NOT be modified by any other security
agents along the VC.

Once established, the Security Association ID is used by each security agent throughout the life of the VC.

As a SETUP message proceeds through the network, when an initiating security agent wants to establish a
security association with a responding security agent, it must allocate a Security Association ID for that
service.  Each SSIE SAS that is used to support this new security association will share the same Security
Association ID.  With 8 bits available for the Security Association ID, the greatest number of concentric
security services available on a given VC is 256.

To allocate a new Security Association ID, the security agent scans all existing SSIE SASs, and notes the
largest Security Association ID.  If no SSIE SASs exist, then the Security Association ID is zero (0).
Otherwise, the new Security Association ID for this service is the greatest Security Association ID
encountered plus (+) one (1).  This is an 8-bit ADD operation.  If, as a result of this ADD operation, the
new Security Association ID is zero (0), then a processing error has occurred, and the call must fail, with an
appropriate error cause code.  An initiating security agent has some freedom as to the allocation of Security
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Association ID’s.  Some conditions exist where the next allocated Security Association ID should be greater
than that indicated by the method above, especially where a single security agent is acting as an initiating
and responding security agent for multiple security associations.

Receiving security agents process SSIE SASs based on the SASs’ 12-bit Relative ID, in descending order.
If the initiating security agent requires explicit ordering of security SASs by the responding security agent,
then the SASs must be numbered to reflect that ordering precedence.  The 4 bit SAS Number field is used
for this purpose.  The SAS number is 4 bits long. This limits the total number of strictly ordered SSIE SASs
per security service to sixteen (16).  If order is not a requirement, then the SSIE SASs can share the same
SAS number.  If ordering is not required then the number of SASs per security service is unlimited.
Combinations of ordered and non-ordered SSIE SASs can be accommodated using this convention.

Receiving security agents use scoping to identify those SSIE SASs that are appropriate for this security
agent.  The receiving agent sorts the “scoped” SASs in descending order, and then processes them based on
Security Association ID.  Each unique Security Association ID in the collected list of SASs represents a
unique security association.

If the security association requires further processing, such as when using the Security Message Exchange
Protocol’s 2 Flow and 3 Flow methods, the Security Association ID is used in subsequent SSIE SASs to
reference the peer security association.

5.1.3.2.9.  Target Security Entity Identifier

This optional octet group is the explicit security agent identifier of the target security agent for this specific
SAS.  This group is included only when the Explicit bit is set and all other bits are zeroed in the Scope field
(Octets 5.4 and 5.5).  This value can be one of the Security Agent Identification Primitives: Initiator
Distinguished Name, Responder Distinguished Name, or Security Agent Identifier, which are defined in
Section 6.2.1 of this specification.

5.1.3.2.10.  Security Service Data Section

This section defines the format of the Security Service Data Section of the SAS.  There are two types of
data sections: security message exchange and label-based access control. Each of these data sections is
composed of multiple instances of Security Service Data Section Primitives.  The Security Service Data
Section Primitives are specified in detail in Section 6.1 of this specification.

5.1.3.2.10.1.  Security Message Exchange Data
The Security Message Exchange Protocol is the principal protocol used by two peer security agents to
communicate security parameters needed to establish a security service.  This protocol is specified in detail
in Sections 5.1.1.1 and 5.1.1.2 of this specification.  When non-signaling based transport methods are
indicated, this section is optional.  SSIE SAS based responses should indicate if the optional section was
parsed, by returning it in the CONNECT message.

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 0 0 1 x x

SME Type 5.9
Security Message Exchange Format

Security Entity Identifier 5.9.1 etc
Security Service Specification Section 5.9.2 etc

Confidentiality Section 5.9.3 etc
Authentication Section 5.9.4 etc
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Security Message Exchange Protocol Type (Octet 5.9 bits 2-1)

2   1 Meaning
0   0 Undefined
0   1 Two Way Security Exchange Protocol, Flow 2 is optional
1   0 Two Way Security Exchange Protocol, Flow 2 is required
1   1 Three Way Security Exchange Protocol

Security Entity Identifier (Octet 5.9.1 etc)

This octet group provides the identity of the agents involved in the security exchange.
The primitives that can appear in this section are described in detail in Section 6.2.1.

Security Service Specification Section (Octet 5.9.2 etc)

This octet group contains primitives that provide the security negotiation parameters that
are used in the Security Message Exchange Protocol, and is described in detail in Sections
6.2.2 and 6.2.3.

Confidentiality Section (Octet 5.9.3 etc)

The Confidentiality Section Primitive is described in detail in Section 6.2.4.

Authentication Section (Octet 5.9.4 etc)

This Authentication Section Primitive is described in detail in Section 6.2.5.

5.1.3.2.10.2.  Label Based Access Control
Label Based Access Control is a uni-directional security service where an initiating ATM security agent
provides an access control label from which another security agent can perform an ATM level access
control decision.  Access control labels will generally be limited to a region within which the label has
significance.  When labels are provided in signaling, any security agent that is involved in the connection
SETUP or CONNECT message can make an access control decision based on the contents of the label.
Because of this, the label is generally not discarded by the security agent that inspects the label. When
labels are passed in-band, the security agents that receive the in-band exchange can enforce the access
control policy. The SSIE is used to transport security labels.

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 0 1 0 0 0

Label Identifier 5.9
Label Length 5.9.1
Label Type 5.9.2

Label-Specific Data 5.9.3, etc.

Label Length (Octet 5.9.1)

This octet indicates the length of the Label-Specific Data.  It can be any value in the range
from 0 to 255.

Label Type (Octet 5.9.2)

0000 0001  FIPS 188

This octet group indicates the security label for the connection in the FIPS 188 format.

Label-Specific Data (Octets 5.9.3, etc)
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⇒ FIPS 188 Coding Details [10]

5.1.4. Message Exchange within UNI 4.0 Signaling

This section describes the signaling support for the security message exchange protocols in point-to-point
and point-to-multipoint connections.

5.1.4.1. Point-to-Point Connections

Calling
User A

Called
User BNetwork

FLOW1-2WE & (Network equivalent of) SETUP

FLOW2-2WE & (Network equivalent of) CONNECT

FLOW1-2WE & SETUP

FLOW1-2WE & SETUP

FLOW2-2WE & CONNECT

FLOW2-2WE & CONNECT

Connection Established

Figure 22.  Point-to-Point Signaling Support for Two-Way Security Message Exchange.

Figure 22 shows the signaling support for the two-way security message exchange protocol in point-to-point
connections. (Note: signaling support for the three-way security message exchange protocol is not provided
in this specification.)

At the UNI interface, FLOW1-2WE is carried in the SETUP message and FLOW2-2WE is carried in the
CONNECT message.

At the PNNI and B-ICI interfaces, FLOW1-2WE is carried in the network equivalent of the UNI SETUP
message and FLOW2-2WE is carried in the network equivalent of the UNI CONNECT message.

5.1.4.2. Point-to-Multipoint Connections

The signaling procedures for point-to-multipoint call establishment are described in ATM Forum UNI 4.0
[3] signaling and ITU Q.2971 [22].
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Calling
U ser A
{root}

Called
User C

{subsequent leaf}
Network

FLO W1-2WE & (Network equiv. of) SETU P/AD D  PARTY

FLO W2-2WE & (Network equiv. of) CO NNECT/AddPartyAck

FLO W1-2WE & AD D  PARTY

FLO W1-2WE & SETU P/

FLO W2-2WE & CO NNECT/

FLO W2-2WE & AD D  PARTY ACK

Connection Established

AD D  PARTY

AD D  PARTY ACK

Figure 23.  Point to Multipoint Signaling Support for Two-Way Security Message Exchange for
Subsequent Leaf Setup.

The connection setup for the first party (leaf) in point-to-multipoint connections is the same as the
connection setup in point-to-point connections. So, the two-way security message exchange protocol is
supported the same way as in point-to-point connections.

The connection setup for the subsequent parties (leaves) is supported with the two-way security message
exchange.

Figure 23 shows the signaling support for the two-way security message exchange protocol when setting up
subsequent parties (leaves).

At the UNI interface on the calling side, FLOW1-2WE is carried in the ADD PARTY message and
FLOW2-2WE is carried in the ADD PARTY ACK message.

At the UNI interface on the called side, FLOW1-2WE is carried in the SETUP message and FLOW2-2WE
is carried in the CONNECT message.

At the PNNI and B-ICI interfaces, FLOW1-2WE is carried in the network equivalent of the UNI ADD
PARTY message and FLOW2-2WE is carried in the network equivalent of the UNI CONNECT message.

5.1.4.3. Leaf Initiated Join Capability

The signaling procedures for leaf initiated join capability are described in Section 6.0 of ATM Forum UNI
Signaling 4.0.

There are two modes of operation associated with the leaf initiated join capability: root prompted join and
leaf prompted join without root notification. The first SETUP message from the root will indicate whether
this is the root prompted join or leaf prompted join without root notification.

5.1.4.3.1.  Root Prompted Join

In this mode of operation, the root of the connection handles the LIJ request. The root adds leaves to or
removes leaves from a new or established connection using the point-to-multipoint procedures. This type of
connection is referred to as a root LIJ connection.
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In this mode of operation, since the addition (or removal) of a leaf is handled by the root, the point-to-
multipoint security procedures described above still apply and no additional enhancement is needed.

5.1.4.3.2.  Leaf Prompted Join Without Root Notification

In this mode of operation, if the leaf’s request is for an existing connection, the network handles the request.
The root is not notified when a leaf is added to or dropped from the connection. This type of connection is
referred to as a network LIJ connection.

In this mode of operation, since the addition (or removal) of a leaf is not handled by the root, the current
point-to-multipoint security procedures described above do not apply. Support for this mode of operation is
outside the scope of this specification.

5.1.4.4. Security Agent Procedures for Signaling-Based Message Exchange

5.1.4.4.1.  General Procedures

The general security procedures shall apply for all procedures defined in Section 5.1.4.4.

Refer to Section 1.3 for definition of “Security Agent.”

The SAsme shall set the Pass Along indicator [5] to one, so those PNNI nodes that do not implement a SA
along the path of the VC will pass the SSIE to the next node.  The IE Action Indicator in the IE Instruction
Field of the SSIE shall be set to 001 “Discard Information Element and Proceed”.  It is recommended that
Security Agents be capable of handling the status report generated from the value 010 “Discard Information
Element, Proceed and Report Status.”  Loss of the SSIE will be noted in the CONNECT message so that
appropriate security policy actions can be invoked.

Security Association Sections (SASs) within the SSIE are processed as “atomic” entities, and so are
processed to completion prior to processing of subsequent SASs.

Security agents, when modifying information elements in the signaled message, shall conform to the
procedures that govern the format and behavior of the object information elements.  Specifically, the
relevant procedures described in UNI 4.0 [3], Q.2931 [21], and Q.2971 [22] shall apply.

In the case where errors occur during processing and the security service cannot be performed or
established, the security agent shall notify signaling to clear the call, and provide a cause code and
diagnostic.

The following procedures describe actions taken by security agents upon receipt of a message containing an
SSIE.  Version 1 Security Agents ignore SSIEs occurring in any other message.

5.1.4.4.2.  Initiating Security Agent Procedures

5.1.4.4.2.1.  Call/Connection Request
Upon receipt of a SETUP message by an initiating ATM security agent, all SSIE Security Association
Sections that are present in the signaled message are parsed and the greatest Relative ID Security
Association ID is noted.  If there are no SSIE SASs present, the greatest Relative ID is zero.

Based on the security service that the security agent is to provide, the initiating security agent generates the
appropriate Security Association Sections (SAS) for inclusion in the message, providing all mandatory
fields that may be required.  The initiating SA will ensure that:

1. The Version number for all ATM Forum Version 1.0 Security Services is zero.
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2. The transport method is chosen and indicated in the Transport Indicator field, using the guidelines
specified in Section 5.1.3.2.4 of this document.

3. The Security Message Exchange State is set to zero. This indicates that this SAS contains information
for FLOW1 of the two-way or three-way message exchange protocol.

4. If the SAS is intended for only one security agent, then the Discard bit is set to 1.  Generally, label
based access control services can be intended for more than one target security agent, and so for these
services the Discard bit may be set to zero.

5. If the security agent intends to use an explicit Target Security Agent Identifier to identify the intended
target security agent, the Explicit Scope bit is set and an optional Target Security Entity Identifier is
included in the SAS header.

 If the Target Security Entity Identifier is not used, then an appropriate Scope description is selected to
identify the Region and Role of the intended target security agent.  Details on the use of this field are
specified in Section 5.1.3.2.7.

6. The security agent allocates a new Security Association ID value for the security services SAS, as
described in Section 5.1.3.2.8. The Security Association ID is noted and is used to identify the
corresponding SSIE SAS in the expected CONNECT message.

7. Each Security Association Section is given a SAS Number that specifies the precedence order for
processing SASs within the same Security Association.  SASs will be processed in descending order.
The order of processing SASs with the same SAS Number is undetermined.

If an SSIE does not already exist in the SETUP message, an SSIE header is prepended to the SASs that are
to be added to the message.  The new SASs are then added to the signaled message accordingly.

If any error occurs in processing, the security agent should return the failure condition “Security Protocol
Processing Error” (see Section 5.1.6), with an appropriate diagnostic for the condition that generated the
error.

At this point, the message is returned to the signaling entity.

5.1.4.4.2.2.  Call/Connection Acceptance
Upon receipt of a CONNECT message by an initiating ATM security agent, all SSIE Security Association
Sections that are present in the signaled message are parsed and those SASs that have Relative ID Security
Association IDs that match those being supported by this security agent are processed.  If there are no SSIE
SASs present that match any expected Relative ID Security Association IDs, then an error has occurred and
the security agent will return the failure condition, “Missing Required Security Information Element” (see
Section 5.1.6). If only a partial set of expected Relative ID Security Association IDs is present in the
CONNECT message, then the initiating SA shall determine if the call should be in error. This decision is
based on the SASs received and the initiating SA’s security policy.

If there is no SSIE present then the initiating SA shall determine if the call should be in error. This decision
is based on the initiating SA’s security policy. If the SASs are unresolved or partially resolved, the initiating
SA can revert to in-band message exchange to establish the security service.

The initiating security agent processes all matching SASs, in descending order based on the Relative ID.  If
an error occurs during processing, the security agent will return the failure condition “Security Protocol
Processing Failure.”

For each SAS, the initiating security agent processes the contents of the SAS to completion.  If the
processing completes successfully, then the initiating security agent may perform additional processing,
depending on the value of the Transport Indicator field.  If the Transport Indicator is Signaling-Based
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messaging, then no additional processing is performed. If the Transport Indicator is In-Band Messaging,
then the initiating security agent performs the In-Band Security Message Exchange as outlined in Section
5.1.5.  If an error occurs during extended SME processing, the security agent will return the failure
condition “Security Protocol Processing Failure.”  Upon successful completion of the extended SME, the
initiating security agent processes the next appropriate SAS.

At this point, the message is returned to the signaling entity.

5.1.4.4.3.  Responding Security Agent Procedures

5.1.4.4.3.1.  Call/Connection Request

Upon receipt of a SETUP message by a responding security agent, if an SSIE is present, all SSIE Security
Association Sections that are present in the signaled message are parsed and the SASs that are intended for
this security agent are collected. The security agent selects all the appropriate SSIE SASs based on either
the explicitly specified Target Security Entity Identifier or based on the Region and Role bits of the SAS
Scope field, using the procedures described in Section 5.1.3.2.7.  From this collection, SASs that have a
Security Service Identifier that match a security service that can be provided by this security agent are
retained.  All other SASs are left unmodified.  If the SETUP message does not contain a required SSIE or a
required SAS, the security agent, based on policy, will either revert to in-band message exchange to
establish the security service or clear the call with the failure condition “Missing Required Information
Element” (see Section 5.1.6).

The responding security agent processes all matching SASs, in descending order based on the SAS’s
Relative ID.  If an error occurs during processing, the security agent will return the failure condition
“Security Protocol Processing Failure.”

For each new Security Association ID number encountered in the collection of appropriate SASs, a new
security association is allocated and subsequently referenced by Security Association ID number.  All SASs
with the same Security Association ID are processed within the same security association context, and they
are processed in descending order based on SAS number.  SASs with identical 8 bit Security Association ID
numbers are processed in undetermined order.

Each SAS is processed to completion, before processing can proceed to the next SAS.

Any subsequent flows or responses to processed SASs are held, pending the arrival of the appropriate
CONNECT message for this VC.

If the Discard bit in the Scope field is set (1), the security agent removes the SAS from the SSIE and
adjusts the SSIE length.  If no other SASs remain, the SSIE is removed from the signaled message.  If the
Discard bit is zero (0), the SAS is retained, unmodified, in the signaled message.

At this point, the message is returned to the signaling entity.

5.1.4.4.3.2.  Call/Connection Acceptance
Upon receipt of a CONNECT message by a responding security agent, all SSIE Security Association
Sections that are present in the signaled message are parsed and the greatest Relative ID Security
Association ID is noted.  If there are no SSIE SASs present, the greatest Relative ID is zero.  The security
agent determines that the Relative ID of any pending second (2nd) flow or response SASs are not less than
the greatest observed Relative ID in the current message. Once this is done, the security agent builds one or
more SASs (with the Flow Indicator set to 1 to indicate a FLOW2 message), and adds or appends the
pending SASs to the SSIE.  If any processing errors occur, the security agent will return an appropriate
error condition and the signaling entity will clear the call with the failure condition “Security Protocol
Processing Failure” (see Section 5.1.6).

At this point, the message is returned to the signaling entity.
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5.1.4.5. Endpoint Requests for Security Services

An endpoint or host that does not provide security services may (as an option) request security services
from a downstream security agent as follows:

1. Insert a Security Services Information Element into the SETUP message on the signaling channel.

2. Set the Security Message Exchange Protocol Type field (octet 5.9) to the “undefined” codepoint
(“0 0”).

3. Insert any combination of the following optional fields, indicating the desired service(s) and/or
algorithm(s):

- Security service declaration,
- Data confidentiality algorithm,
- Data integrity algorithm,
- Hash algorithm,
- Signature algorithm,
- Key exchange algorithm,
- Session key update algorithm,
- Access control algorithm.

Multiple algorithms may be inserted in preference order for each requested security service.

Upon receipt of such a request, the security agent replaces the Security Services Information Element with
one of its own choosing, based on its security policy.  A security agent is under no obligation to use the
options requested by the endpoint or host.  It should be noted that this process is not secure, and that a
trusted link between the endpoint and security agent is assumed.

5.1.4.6. Acknowledgements to Endpoints Requesting Security Services

A security agent shall acknowledge a security request received from an endpoint as follows:

1. Insert a Security Services Information Element into the CONNECT message on the signaling channel.

2. Set the security message exchange protocol to the unspecified codepoint (“0 0”).

3. Indicate which service(s) and/or algorithm(s) were negotiated by the security agents, only for those
instances where a specific request was made.

The endpoint or host would then have the option of rejecting the call if it did not get the service(s) and/or
algorithm(s) it desired.

5.1.5. Message Exchange within the User Plane

This section defines the procedures for performing the security message exchange protocol within the user
plane virtual circuit. These procedures apply for VCs that are established via signaling (SVCs), as well as
VCs established via management (PVCs).

5.1.5.1. Security Message Exchange for Signaled Point-to-Point Connections

The in-band security message exchange protocol is a method that is suitable for exchanging security
messages between ATM entities when signaling is not available either by policy or lack of support. After
the user connection is completed successfully, the Security Agents (SAs) exchange security information in-
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band over the user traffic channel.  (The SAs block the user traffic from passing between the users until
after the SAs have completed the security exchange.)

Figure 24 presents point-to-point call setup and security exchange using the hosts’ user plane for a Switched
Virtual Circuit (SVC) connection.

The ATM calling user transmitting an ordinary SETUP message requesting a point-to-point connection
starts the process. The security agent determines the connection is established either by directly processing
the signaling messages in a standalone implementation, or through an indication from the signaling function
if the SA is hosted in a switch or end system. The method the security agent uses to determine whether a
connection requires security services is a local issue and is not specified by this document. This applies to
both the initiating and responding security agents. In some environments, the security services will be
required for all connections. However, security could be applied selectively to connections between
designated hosts. The source and destination ATM addresses could be used as a means of determining to
which connections to apply security.

Once the ATM connection is established, the SAs perform certain security-related exchanges before either
SA allows user traffic to pass. The security exchange occurs in-band on the user connection using a security
exchange protocol and is used to perform such tasks as authentication and key exchange. In the case of a
VPC connection request, the security exchange is performed over a well-known VCI within the VPC. This
process is described in more detail below.
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SETUP
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CONNECT
CONNECT
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transport of security information.
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Security-related information exchange using the in-band
security message exchange protocol

Called User
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User Plane Connection Available

Allow user to user traffic to pass

Figure 24.  Point-to-Point Security Exchange Using the Hosts’ User Plane for SVCs.

Once the in-band user connection is available for use by the SAs, the initiator SA sets up a session with the
responder SA. This session is used to exchange security information.

The mechanisms used for security message exchange shall use the Security Message Exchange Protocols
described in Section 5.1.5.3 for point-to-point connections. The in-band secure message exchange will only
send those information elements that are required for the security exchange (e.g., Security Services IE, etc.),
and not the entire signaling message (i.e., SETUP message).

The initiator and responder SAs block user traffic on the specified connection from passing until the SAs’
peers have completed their security exchange.

Once the security protocol is complete (e.g., authentication, key exchange), the initiator and responder SAs
allow user plane traffic to flow (i.e., “un-block” user traffic).
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A SA can be collocated with the end user or at a switch. For example, the internal interface to the SA could
be implemented as an application layer interface at the end user device or keyed off of signaling messages
received at a switch.

5.1.5.1.1.  Details of Security Call Establishment

Before In-Band Security Message Exchange can be invoked, a bi-directional connection between the
initiating and responding users must be established.   In-Band Security Messages flow over this connection.
The underlying connection need not provide assured data delivery.  The In-Band Security Message
Exchange Protocol described in Section 5.1.5.3 has its own assured message exchange mechanism. The In-
Band Security Message Exchange operation is independent of whether the underlying connection provides
assured or non-assured data delivery. The underlying connection must allow messages of variable length to
be sent. For these reasons, AAL5 shall be used as the data delivery service for in-band security message
exchange.

5.1.5.1.1.1.  Establish Point-to-Point on Calling Side

The initiating security agent shall support establishment of secure point-to-point Switched Virtual Circuit
(SVC) connections initiated from the calling side as follows:

Upon receipt of a SETUP message arriving on the user side, the SA shall examine the traffic parameters
contained within the message to determine if the connection can support a full duplex SME.

If the SA determines that the requested connection is point-to-point and can support the necessary SME, the
SA shall forward the message toward the called user.

If the SA determines that the user requested point-to-point connection and the cell rates cannot support the
necessary SME or the user requested point-to-multipoint connection, the SA shall clear the call with the
failure condition “Security Protocol Processing Failure” (see Section 5.1.6)

Note: Alternatives to clearing the call if the connection does not support the bandwidth for in-band SME,
such as out-of-band exchange or renegotiation of traffic parameters, are for future study.

Upon receipt of a CONNECT message from the called user accepting the connection (or some other
indication) the SA shall invoke the in-band security exchange protocol as specified in Section 5.1.5.3 over
the user connection and prevent the CONNECT message (or some internal indication) from being sent to
the calling user until the security exchange completes.  If the connection is a VPC connection request, the
security exchange shall use VPI=x (where x is the VPI assigned for the VPC) and VCI=1 (i.e., well known
VCI).

Note: The SA may elect to test the traffic parameters contained in the CONNECT message to ensure that in-
band SME can be supported.

Upon completion of the in-band security exchange protocol indicating that the exchange completed
successfully, the initiator SA shall “un-block” the ATM connection, allowing user cells to flow, and forward
the CONNECT message over the user side interface. If the security exchange is deemed unsuccessful by the
initiator SA, the SA shall request that the ATM connection be cleared. After the connection is cleared, the
End User may attempt to retry the connection establishment.

5.1.5.1.1.2.  Establish Point to Point on Called Side

The responding SA shall support establishment of secure point-to-point Switched Virtual Circuit (SVC)
connections initiated from the called side as follows:

Upon indication that an inbound connection request has been received on the Network side, i.e., a SETUP
message, the SA shall relay the SETUP message to the user side and wait for the associated CONNECT
message.
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The SA shall assure that any traffic received on the user side associated with the connection request will be
blocked until the security exchange has completed successfully.

After receipt of an indication that the CONNECT message has been received from the called user accepting
the connection, the SA shall allow the CONNECT message to be forwarded to the network side and wait for
the in-band security exchange protocol to be invoked over the user connection. If this is a VPC connection
request, the SA security exchange shall use VPI=x (where x is the VPI for the VPC) and VCI=1 (i.e., well
known VCI).

Upon completion of the in-band security exchange protocol indicating that the exchange completed
successfully, the responder SA shall “un-block” the ATM connection, allowing user cells to flow. If the
security exchange is deemed unsuccessful by the responder SA, it shall request that the connection be
cleared. After the connection is cleared, the End User may attempt to retry the connection establishment.

5.1.5.2. Security Message Exchange for Permanent Point-to-Point Connections

The basic premise of this approach is to simplify and strengthen “secure” PVC provisioning. After the user
connection is completed successfully, the security agents exchange security information in-band over the
user traffic channel.  (The SAs block the user traffic from passing between the users until after the SAs have
completed the security exchange.)

Figure 25 presents point-to-point call setup and security exchange using the hosts’ user plane for a PVC
connection.

The process is started by an administrative (e.g., Network Manager) provisioning of a point-to-point
connection. If the host requires security services, a security agent (SA) must be notified of the connection
request. This can also be accomplished administratively. Each SA must also be told if it is the initiator or
responder of the security exchange.

The SAs perform certain security-related exchanges before either SA allows user traffic to pass. The
security exchange occurs in-band on the user connection using a security exchange protocol and is used to
perform such tasks as authentication and key exchange. In the case of a VPC connection request, the
security exchange is performed over a well-known VCI within the VPC. This process is described in more
detail below.
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Figure 25.  Point-to-Point Security Exchange using the Hosts’ User Plane for PVCs.

Once the in-band user connection is available for use by the SAs, the initiator SA sets up a session with the
responder SA. This session is used to exchange security information.

The mechanisms used for security message exchange shall use the Security Message Exchange Protocols
described in Section 5.1.5.3 for point-to-point connections (the same as used for SVC in-band exchange).
The in-band secure message exchange will only send those information elements that are required for the
security exchange (e.g., Security Services IE, etc.), and not the entire signaling message (i.e. SETUP
message).

The initiator and responder SA block user traffic on the specified connection from passing through it until
the SA peers have completed their security exchange.

Once the security exchange is complete (e.g., authentication, key exchange), the initiator and responder SAs
allow user plane traffic to flow (i.e., “un-block” user traffic).

A SA can be collocated with the end user or at a switch.
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5.1.5.2.1.  Details of Secure Call Provisioning for PVCs

Before the In-Band Security Message Exchange can be invoked, a bi-directional connection between the
initiating and responding users must be established.   In-Band Security Messages flow over this connection.
The underlying connection need not provide assured data delivery.  The In-Band Security Message
Exchange Protocol described in Section 5.1.5.3 has its own assured message exchange mechanism. The In-
Band Security Message Exchange operation is independent of whether the underlying connection provides
assured or non-assured data delivery. The underlying connection must allow messages of variable length to
be sent. For these reasons, AAL5 shall be used as the data delivery service for in-band security message
exchange.

5.1.5.2.1.1.  Establish Point-to-point—Initiator Side
The initiating security agent shall support establishment of secure point-to-point Permanent Virtual Circuit
(PVC) connections (initiator side) as follows:

Upon notification that a connection is requesting security services, the SA shall assure that any traffic
received associated with the connection request will be blocked until the security exchange has completed
successfully.  The SA must also be notified that it is to function as the initiator.

Once the SA has been notified of the secure connection request and its SA function (i.e., Initiator) the SA
shall invoke the in-band security exchange protocol over the user connection. If this is a VPC connection
request, the security exchange shall use VPI=x and VCI=1 (i.e., well known VCI), where x is the VPI of the
VPC being requested.

If the protocol fails, the SA shall terminate its current attempt to secure the PVC (the user traffic will
continue to be blocked).

Upon completion of the in-band security exchange protocol indicating that the exchange completed
successfully, the initiator SA shall request that the traffic associated with the connection be “un-blocked.” If
the security exchange is deemed unsuccessful by the initiator SA, the SA shall terminate its current attempt
to secure the PVC (the user traffic will continue to be blocked).

5.1.5.2.1.2. Establish Point to Point—Responder Side
The responding SA shall support establishment of secure point-to-point Permanent Virtual Circuit (PVC)
connections as follows:

Upon notification that a connection is requesting security services, the SA shall assure that any traffic
received associated with the connection request will be blocked until the security exchange has completed
successfully. The SA must also be notified that it is to function as the responder.

Once the SA has been notified of the secure connection request and its SA function (i.e., Responder) the SA
shall wait for the in-band security exchange protocol to be invoked by the Initiator over the user connection
and start a PVC Wait timer (P_Wait). If this is a VPC connection request, the SA security exchange shall
use VPI=x and VCI=1 (i.e., well known VCI), where x is the VPI of the VPC being requested. (Note that
the use of VCI=1 for in-band security message exchange is temporary, and that VCI=1 is available to other
functions once the in-band SME protocol successfully completes.)

If the P_Wait timer expires, or if the protocol fails, the SA shall terminate its current attempt to secure the
PVC (the user traffic will continue to be blocked). This timer is canceled at completion of the security
exchange, or if the connection is cleared. The value of P_Wait is defined in Section 5.1.5.3.5, Table 7.

Upon completion of in-band security exchange protocol indicating that the exchange completed
successfully, the responder SA shall request that the traffic associated with the connection be “un-blocked.”
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If the security exchange is deemed unsuccessful by the responder SA, the SA shall terminate its current
attempt to secure the PVC (the user traffic will continue to be blocked).

5.1.5.3. In-Band Security Message Exchange Protocol

The three-way security message exchange protocol as described in Section 5.1 is used for in-band
messaging. No changes to this protocol are required to operate in-band over the user channel. However, for
the in-band operation of this protocol, two additional messages are used: CONFIRM-AP and FAULT.

CONFIRM-AP: The Responder sends this message to the Initiator in reply to a FLOW-3 message. When
the Initiator receives CONFIRM-AP, it concludes that the Responder received FLOW-3 and the protocol
completed successfully. This message is an integral part of the three-way security message exchange
procedure because its purpose is to provide notification to the Initiator (i.e., the calling user) that the
Responder received the FLOW3 and the Initiator may begin transmitting data.

FAULT: In error scenarios, this message is used to carry cause data (identifying the error) from the partner
that detected the error to the other remote partner.

(The format of these messages is defined below in Section 5.1.5.3.2.)

5.1.5.3.1. Protocol Procedures

The following is a textual description of the in-band security message exchange protocol procedures
contained in the finite state machine tables of Section 6.1. If any discrepancies exist between the following
text and the FSM tables in Section 6.1, the FSM tables shall take precedence.

Figure 26 shows the normal processing at the Initiator.

AAL5 shall be used for transport of in-band security message exchange protocol messages.

The Initiator starts the message exchange process by sending a FLOW-1 message, starting timer T100, and
keeping track of the number of times FLOW-1 has been sent by using variable I-Flow1-Retry-Count. If a
FLOW-2 message in reply to the FLOW-1 message is not received before the expiry of T100, the FLOW-1
message is retransmitted and timer T100 restarted.

The Initiator increases its retry counter, I-Flow1-Retry-Count, each time it sends (or resends) the FLOW-1
message. If T100 expires when I-Flow1-Retry-Count is greater than I-MAX-FLOW1-RETRY the message
exchange fails.

If the Initiator receives a FLOW-2 message that is invalid, the message exchange fails.

If the Initiator receives a valid FLOW-2 message, it stops timer T100, starts timer T101, and sends a
FLOW-3 message to the Responder.
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Figure 26.  Protocol Procedure at the Initiator.

The Initiator assumes that the message exchange is successful when a CONFIRM-AP message is received.
However, if a FLOW-2 message is received before T101 expires or before a CONFIRM-AP message is
received, it resends a FLOW-3 message by concluding that the received FLOW-2 message is an indication
that the FLOW-3 it sent earlier has not reached the Responder. The Initiator continues this behavior until
T101 expires, or a CONFIRM-AP message is received, whichever is earlier.

The Initiator concludes that the protocol completed successfully as soon as a CONFIRM-AP message is
received.

The Initiator concludes that the message exchange failed if T101 expires.

Figure 27 shows the normal processing at the Responder.
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Figure 27.  Protocol Procedure at the Responder.

The Responder waits until it receives a FLOW-1 message. If the FLOW-1 message is not valid, the message
exchange fails.

If the Responder receives a valid FLOW-1 message, it starts timer T102, sends a FLOW-2 message, and
keeps track of the number of times FLOW-2 has been sent in variable R-Flow2-Retry-Count. If a FLOW-3
message in reply to the FLOW-2 message is not received before the expiry of T102, the FLOW-2 message
is retransmitted and timer T102 restarted.

The Responder increases its retry counter, R-Flow2-Retry-Count, each time it sends (or resends) the
FLOW-2 message. If T102 expires when R-Flow2-Retry-Count is greater than R-MAX-FLOW2-RETRY
the message exchange fails.

If the Responder receives a FLOW-3 message that is invalid, the message exchange fails.

If the Responder receives a valid FLOW-3 message, the message exchange is successful. The Responder
sends a CONFIRM-AP message to the Initiator so that the Initiator can conclude that the protocol
concluded successfully.

5.1.5.3.2. General Message Format and Message Field Coding

Within the In-band Security Message Exchange Protocol, every message shall consist of the following
parts:

1. Message type,
2. Message length,
3. Variable length fields, as required.
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Fields 1 and 2 are common to all of the messages and shall always be present, while field 3 is specific to
each message type.  This organization is illustrated in Figure 28.

Message type 1
Message length 2
Message length (continued) 3
Variable length information elements as
required

4,
etc

Figure 28.  General Message Organization.

5.1.5.3.2.1.  Message Type
The purpose of the message type is to identify the function of the message being sent. The message type is
the first part of every message.  The message type is coded as shown in Figure 29.

8 7 6 5 4 3 2 1 Octets
Message Type 1

Figure 29.  Message Type.

Message Type (Octet 1)

Bits Meaning
8 7 6 5 4 3 2 1
0 0 1 - - - - - In-band security message
0 0 1 0 0 0 0 1 Flow1-3WE
0 0 1 0 0 0 1 0 Flow2-3WE
0 0 1 0 0 0 1 1 Flow3-3WE
0 0 1 1 0 0 0 1 CONFIRM-AP
0 0 1 1 0 0 1 0 FAULT

Note - Although these message types are for in-band messages only, the codepoints were chosen so as not to
overlap with the signaling codepoints for message type.

5.1.5.3.2.2.  Message Length
The purpose of the message length is to identify the length of the contents of a message.  It is the binary
coding of the number of octets of the message contents, excluding the octets used for “message type” and
for the message length indicator itself.

If the message length contains no further octets, the message length is coded to all “0’s”.

The message length is the second field of every message.  The message length is a 16-bit value, coded as
shown in Figure 30.

8 7 6 5 4 3 2 1 Octets
Message length 1
Message length (continued) 2

Figure 30.  Message Length.
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5.1.5.3.2.3.  Variable Length Information Elements

5.1.5.3.2.3.1.  Security Services Information Element

The Security Services Information Element (SSIE) is defined in Section 5.1.2 of this specification. When
in-band messaging is used, the SME Flow Indicator in the SSIE, defined in section 5.1.3.2.5, shall be
ignored.

5.1.5.3.2.3.2.  Cause Information Element

The Cause information element format defined in Q.2931[21] shall be used for transporting cause codes
within the context of the In-Band Message Exchange Protocol.  Refer to Section 5.1.5.3.6 for cause values.

5.1.5.3.3.  Message Contents for In-band SME Messages

5.1.5.3.3.1.  Flow 1-3WE
This message is sent from the initiator to the responder to initiate the three-way security message exchange.

Message Type: Flow 1-3WE

Field or Information
Element

Reference Type Length

Message Type Section 5.1.5.3.2.1 M 1
Message Length Section 5.1.5.3.2.2 M 2
Security Services
Information Element

Section 5.1.2 M 12 - n

5.1.5.3.3.2.  Flow 2-3WE
This message is sent from the responder to the initiator in response to Flow1-3WE.

Message Type: Flow 2-3WE

Field or Information
Element

Reference Type Length

Message Type Section 5.1.5.3.2.1 M 1
Message Length Section 5.1.5.3.2.2 M 2
Security Services
Information Element

Section 5.1.2 M 12 - n
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5.1.5.3.3.3.  Flow 3-3WE
This message is sent from the initiator to the responder in response to Flow2-3WE.

Message Type: Flow 3-3WE

Field or Information
Element

Reference Type Length

Message Type Section 5.1.5.3.2.1 M 1
Message Length Section 5.1.5.3.2.2 M 2
Security Services
Information Element

Section 5.1.2 M 12 - n

5.1.5.3.3.4.  CONFIRM-AP
This message is sent from the responder to the initiator in response to Flow3-3WE.  When the initiator
receives the CONFIRM-AP message, it concludes that the responder received FLOW3-3WE and the
protocol completed successfully.  This message is an integral part of the three-way security message
exchange procedure because its purpose is to provide notification to the initiator (i.e., calling user) that the
responder received the Flow3 and the initiator may begin transmitting data.

Message Type: CONFIRM-AP

Field or Information
Element

Reference Type Length

Message Type Section 5.1.5.3.2.1 M 1
Message Length Section 5.1.5.3.2.2 M 2

5.1.5.3.3.5.  Fault
In error scenarios, this message is used to carry cause data (identifying the error) from the partner that
detected the error to the other remote partner.

Message Type: FAULT

Field or Information
Element

Reference Type Length

Message Type Section 5.1.5.3.2.1 M 1
Message Length Section 5.1.5.3.2.2 M 2
Cause Refer to Q.2931 [21] M 4 - 34

5.1.5.3.4.  Timer Definitions

The following is a description of the timers that are used for the in-band operation of the three-way security
message exchange protocol. The values of these timers can be found in Section 5.1.5.3.5, Table 7.

1. T100: This timer is used by the Initiator of the protocol to determine whether it needs to resend FLOW-
1 to the Responder. The timer is started when the Initiator sends FLOW-1. If the Initiator has not
received FLOW-2 before the timer expires, then the Initiator resends FLOW-1 and starts the timer
again. The timer is stopped when a FLOW-2 message is received.
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2. T101: This timer is used by the Initiator of the protocol to ensure that it is waiting as long as the
Responder is present and is potentially resending FLOW-2 to indicate that the partner has not received
FLOW-3 from the Initiator. The timer is started the first time the Initiator sends FLOW-3. As long as
this timer has not expired, the receipt of FLOW-2 triggers the sending of FLOW-3.

3. T102: This timer is used by the Responder in the protocol to determine whether it needs to resend
FLOW-2 to the Initiator. The timer is started when the Responder sends FLOW-2. If the Responder has
not received FLOW-3 before the timer expires, then the Responder resends FLOW-2 to the Initiator
and starts the timer again. The timer is stopped when a FLOW-3 message is received.

The following variables (retry counters) are used in conjunction with the timers used in the protocol.

1. I-Flow1-Retry-Count: This variable is used in conjunction with timer T100 by the Initiator of the
protocol and counts the number of times that FLOW-1 has been sent. FLOW-1 may be sent up to a
maximum of I-MAX-FLOW1-RETRY times.

2. R-Flow2-Retry-Count: This variable is used in conjunction with timer T102 by the Responder in the
protocol and counts the number of times that FLOW-2 has been sent. FLOW-2 may be sent up to a
maximum of R-MAX-FLOW2-RETRY times.

The following is a description of the constants that are used in conjunction with the retry counter variables
used in the protocol. The values of these constants can be found in Section 5.1.5.3.5, Table 8.

1. I-MAX-FLOW1-RETRY: This constant indicates the maximum number of times that the Initiator may
try to resend FLOW-1 to the Responder.

2. R-MAX-FLOW2-RETRY: This constant indicates the maximum number of times that the Responder
may try to resend FLOW-2 to the Initiator.

5.1.5.3.5.  Timer Values

The protocols for in-band (user plane-based) security message exchange use a number of timers in their
procedures. These timers are summarized in the following table:

Table 7: Timers for In-Band Security Message Exchange

Timer Name Timer Value
P_Wait 600 seconds
T100 3 seconds
T101 9 seconds
T102 3 seconds

In addition, the in-band security message exchange protocols use the following constant definitions:

Table 8: Constant Values for In-Band Security Message Exchange

Constant Name Constant Value
I_MAX_FLOW1_RETRY 2
R_MAX_FLOW2_RETRY 2

5.1.5.3.6.  Protocol Error Handling

Detailed error handling procedures are implementation dependent. However, capabilities facilitating the
orderly treatment of error conditions provided for in this section shall be provided in each implementation.
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When the Initiator or Responder detects an error, it sends a FAULT message to its partner to report the
error, enters the failed state, and aborts. All errors are defined to be unrecoverable errors. The protocol
aborts upon sending or receiving a FAULT message.

For SVC-initiated calls in the failed state, the security agent shall clear the call.  Error recovery for PVC
initiated calls is implementation specific.

A “Cause” information element describes the reason for an error and provides diagnostic information. This
information element is carried in the FAULT message. The Cause information element may be repeated in a
FAULT message.

The following cause codes are defined.

In-Band Message Exchange Cause Codes
Number Meaning
111 protocol error, unspecified
100 invalid information element contents
102 recovery on timer expiry
63 service or option not available
97 message type non-existent or not implemented
96 mandatory information element missing
47 resource unavailable
Note 1 security services failure (Note 2)

Note 1:

The value of the “Security Services Failure” cause code is defined in the UNI Signaling 4.0 Security
Addendum [4].

Note 2:

The specific security protocol failure (e.g., Authentication failure) shall be included in the Diagnostics field
of the Cause IE when the cause value = “security services failure.”

5.1.6. Security Information Exchange Error Processing

The following text applies when security message exchange occurs in UNI 4.0 signaling, in-band, or both.

When errors occur in establishing or maintaining a security service on a specific VC, the VC must be put
into a state where User Data transport is not supported.  For establishing or established VCs this is
accomplished by clearing the call.  When clearing a call based on failure of a security agent to establish or
maintain a security service, an appropriate Cause code will be chosen by the security agent that is involved
with the fault, and a diagnostic is provided that provides adequate information for the peer security agent to
understand the nature of the fault condition.

Security diagnostics are specific to the types of error conditions that can happen within a security agent and
are limited to 28 bytes in length.  The amount of information that is disclosed in a security agent diagnostic
may have a security impact, and as such each diagnostic has a mandatory section and optional sections that
provide more detail on the condition that generated the error.

1.  Missing Required Security Information Element.

 When this error condition occurs, the call is cleared with Cause code # 96 “Mandatory Information
Element Missing” (see Q.2931 [21]), and the diagnostic will be at most 28 bytes of a valid SSIE.
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A 4-byte SSIE header is mandatory.  Optionally, the diagnostic can contain valid SAS segments
that will declare to the originator the type of security service that is required by the security agent.
When providing SASs, the security agent can use existing fields to provide additional information,
such as the security agent’s region and role bits.

2.  Security Protocol Processing Error.

 When this error condition occurs, the call is cleared with Cause code “Security Services Failure”
(see the UNI Signaling 4.0 Security Addendum [4] for the value of this cause code, and see
Q.2931 [21] for the Cause Information Element format). The diagnostic will be at most 28 bytes of
a valid SSIE.  A 4-byte SSIE header is mandatory.  Optionally, the diagnostic can contain valid
SAS segments which will indicate which SAS was being acted on when the processing error
occurred.  The SAS may include the Relative ID of the SAS that generated the error.

3.  Security Policy Violation

When this error condition occurs, the call is cleared with Cause code “ Security Services Failure”
(see the UNI Signaling 4.0 Security Addendum [4] for the value of this cause code, and see
Q.2931 [21] for the Cause Information Element format). The diagnostic will be at most 28 bytes of
a valid SSIE.  This diagnostic should contain valid SAS segments which indicate the service that is
not allowable based on the security policy that was violated.  The SAS may include the Relative ID
of the SAS that generated the error.

Reporting this specific error condition is optional, as local policy may want to minimize the
amount of information disclosed when a security error occurs.  When reporting this specific error
condition is not possible, a general “Security Protocol Processing Error” should be reported.

5.1.7. Security OAM Cells

5.1.7.1. Overview of ATM Layer OAM Cell Flows

At the ATM layer, two OAM flows are defined: F4 (virtual path level) and F5 (virtual channel level), which
are used for the operation and maintenance of connections. F4 flow is for virtual path connections (VPCs)
and F5 flow is for virtual channel connections (VCCs). F4 and F5 flows are for all types of ATM
connections. At the ATM layer, the F4 and F5 flows are carried via OAM cells. F4 and F5 flows are bi-
directional. In all cases, OAM cell flows must conform to the traffic contract for their respective
VCC/VPCs. A detailed description on OAM flows and functions is given in [20].

Note: These mechanisms rely on sufficient bandwidth to sustain OAM cell flows.  If sufficient bandwidth is
not provided, loss or corruption of user data can occur, and errors may arise in the security mechanism
itself.
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Table 9: OAM Cell Type and Function Identifiers.

OAM Cell Type Codepoint Function Type Codepoint
Fault management 0001 AIS

RDI
Continuity check

Loopback

0000
0001
0100
1000

Performance management 0010 Forward monitoring
Backward monitoring

Monitoring & reporting

0000
0001
0010

Activation/Deactivation 1000 Performance monitoring
Continuity check

0000
0001

System management 1111 Security – non-real-time
Security – real-time

0001
0010

The OAM cell formats for ATM layer OAM flows are shown in Figure 31. The OAM cell type (4-bit) field
indicates the type of management function performed by the OAM cell. Currently, four OAM types are
defined: fault management, performance management, activation/deactivation, and system management.
The function type (4-bit) field indicates the function performed by the OAM cell within the management
function. Table 9 shows the codepoints assigned for the OAM cell type field and the function type field.
The function specific field (45 bytes) carries the information related to the actual function of the OAM flow.
The reserved (6-bit) field is not used and left for future use. The error detection code (EDC) field carries a
CRC-10 error detection code computed over the cell data payload.

5.1.7.1.1.  F4 Flow of OAM Cells

The virtual path connection (VPC) operational information is carried via the F4 flow OAM cells. There are
two types of F4 flows: end-to-end F4 flow and segment F4 flow. End-to-end F4 flows are terminated at the
endpoints of a VPC and segment F4 flows are terminated at the connecting points terminating a VPC
segment. A VPC segment is defined as either a single VPC link or a concatenation of multiple VPC links.
Multiple VPC segments can be defined along a VPC path but they cannot overlap.

End-to-end and segment F4 flow OAM cells are passed unmodified by all intermediate nodes. Intermediate
nodes can insert new F4 flow OAM cells, however, the end-to-end F4 flow OAM cells are removed only by
the endpoints of the VPC and the segment F4 flow OAM cells are removed only by the VPC segment
terminating points.
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Figure 31.  F4 and F5 OAM Cells.

F4 flow OAM cells follow exactly the same physical route as the user’s data cells of the VPC. These OAM
cells have the same VPI value as the user’s data cells of the VPC and are identified by pre-assigned VCI
values. The same pre-assigned VCI values are used for both directions of the F4 flows.  Two unique VCI
values are used for every VPC as shown in Figure 31. The VCI value = 4 is used to identify end-to-end F4
flows and the VCI value = 3 is used to identify segment F4 flows.

5.1.7.1.2.  F5 Flow of OAM Cells

The virtual channel connection (VCC) operational information is carried via the F5 flow OAM cells. There
are two types of F5 flows: end-to-end F5 flow and segment F5 flow. End-to-end F5 flows are terminated at
the endpoints of a VCC and segment F5 flows are terminated at the connecting points terminating a VCC
segment. A VCC segment is defined as either a single VCC link or a concatenation of multiple VCC links.
Multiple VCC segments can be defined along a VCC path but they cannot overlap.

End-to-end and segment F5 flow OAM cells are passed unmodified by all intermediate nodes. Intermediate
nodes can insert new F5 flow OAM cells, however, the end-to-end F5 flow OAM cells are removed only by
the endpoints of the VCC and the segment F5 flow OAM cells are removed only by the VCC segment
terminating points.

F5 flow OAM cells follow exactly the same physical route as the user’s data cells of the VCC. These OAM
cells have the same VPI/VCI values as the user’s data cells of the VCC and are identified by pre-assigned
codepoints of the payload type identifier (PTI). The same pre-assigned VCI values are used for both
directions of the F5 flows. Two unique PTI values are used for every VCC as shown in Figure 31. The PTI
value = 5 (101) is used to identify end-to-end F5 flows and the PTI value = 4 (100) is used to identify
segment F5 flows.

5.1.7.2. Security OAM Cell Formats

Two Security OAM cell types are defined—one for non-time-critical processes (called non-real-time), and
one for time-critical processes (called real-time).  The distinction is to differentiate cells that can be
processed independently of the user traffic from those that have direct impact on user traffic.  The SKE and
SKC cells, defined in sections 5.1.7.2.1.1 and 5.1.7.2.2.1, are examples of non-real-time and real-time
security OAM cells, respectively.  The generic format for security OAM cells is shown in Figure 32.
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          __________________________________________________
          |Bit|Bit|Bit|Bit|Bit|Bit|Bit|Bit| Byte |  Descrip |
          | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  #   |          |
          |___|___|___|___|___|___|___|___|______|__________|
          | GFC/VPI[11:8] |   VPI[7:4]    |  1   | ATM addr |
          |_______________|_______________|______|__________|
          |   VPI[3:0]    |   VCI[15:12]  |  2   | ATM addr |
          |_______________|_______________|______|__________|
          |          VCI[11:4]            |  3   | ATM Addr |
          |_______________________________|______|__________|
          |   VCI[3:0]    |   PTI   | CLP |  4   | Addr,PTI |
          |_______________|_________|_____|______|__________|
          |          HEC[7:0]             |  5   | Header Ck|
          |_______________________________|______|__________|
          |  1  1  1  1   |   Func Type   |  6   | OAM+Ftype|
          |_______________|_______________|______|__________|
          |  Relative ID  |  Function ID  |  7   | RID,FID  |
          |_______________|_______________|______|__________|
          |  Security Function Specific   | 8-51 |          |
          |_______________________________|______|__________|
          |  0  0  0  0  0  0  | CRC[9:8] |  52  | 0 , CRC  |
          |____________________|__________|______|__________|
          |          CRC-10 [7:0]         |  53  | CRC-10   |
          |_______________________________|______|__________|

Figure 32.  Generic Security OAM Cell Format.

Notes:

1) For VCCs the PTI field is set to 101 (binary).

2) For VPCs the VCI field is set to 0004 (hex).

3) The CLP bit is always set to 0.

4) For non-real-time security OAM cells, the Func Type field is set to 0001 (binary).

5) For real-time security OAM cells, the Func Type field is set to 0010 (binary).

6) The use of the Relative ID field is defined in Section 5.1.7.3.

7) The use of the Function ID field is described in Table 10 and Table 11.

5.1.7.2.1.  Non-Real-Time Security OAM Cell Formats

Non-Real-Time (NRT) security OAM cells are defined as having an OAM function type of 0001 (binary).
Up to 16 NRT cell types are possible, as defined by the Function ID field.  The code points for the Function
ID field for NRT security cells are defined in Table 10.

Table 10: Function ID Code Points for Non-Real-Time Security OAM Cells.

Function ID
(binary)

Security Function

0001 Data Confidentiality Session Key Exchange (SKE)
0010 Data Integrity Session Key Exchange (SKE)

all others not defined

5.1.7.2.1.1.  Data Confidentiality SKE OAM Cell Format
The format of the Data Confidentiality SKE OAM Cell is defined in Figure 33.
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      __________________________________________________
      |Bit|Bit|Bit|Bit|Bit|Bit|Bit|Bit| Byte |  Descrip |
      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  #   |          |
      |___|___|___|___|___|___|___|___|______|__________|
      | GFC/VPI[11:8] |   VPI[7:4]    |  1   | ATM addr |
      |_______________|_______________|______|__________|
      |   VPI[3:0]    |   VCI[15:12]  |  2   | ATM addr |
      |_______________|_______________|______|__________|
      |          VCI[11:4]            |  3   | ATM Addr |
      |_______________________________|______|__________|
      |   VCI[3:0]    |   PTI   | CLP |  4   | Addr,PTI |
      |_______________|_________|_____|______|__________|
      |          HEC[7:0]             |  5   | Header Ck|
      |_______________________________|______|__________|
      |  1  1  1  1   |  0  0  0  1   |  6   | OAM+Ftype|
      |_______________|_______________|______|__________|
      |  Relative ID  |  0  0  0  1   |  7   | RID,FID  |
      |_______________|_______________|______|__________|
      |    Bank ID    |   Reserved    |   8  | BID,RES  |
      |_______________|_______________|______|__________|
      |            Reserved           |   9  | Reserved |
      |_______________________________|______|__________|
      |           Key Number          | 10-13|    KN    |
      |_______________________________|______|__________|
      |  Encrypted Session Key (ESK)  | 14-45|   ESK    |
      |_______________________________|______|__________|
      |            Reserved           | 46-51| Reserved |
      |_______________________________|______|__________|
      |  0  0  0  0  0  0  | CRC[9:8] |  52  | 0 , CRC  |
      |____________________|__________|______|__________|
      |          CRC-10 [7:0]         |  53  | CRC-10   |
      |_______________________________|______|__________|

Figure 33.  Session Key Exchange (SKE) OAM Cell Format.

Notes:

1) The use of the Relative ID field is defined in Section 5.1.7.3.

2) The Bank ID field is an alternating pattern of 0 hex or F hex, for successive key updates.

3) The key number (KN) field, a 32-bit field, indicates the key number associated with the new session
key. Each session key is assigned a number. The first session key to be exchanged by the session key
update protocol is assigned 1; the second session key is assigned 2, and so forth. The KN is a
cryptographically protected field which is used by the key update protocol to ensure freshness,
uniqueness, and ordering of session key updates and to synchronize the initiator and responder to the
same session key.

4) The Encrypted Session Key (ESK), a 256-bit field, contains the next session key encrypted using the
master key for the connection.  For cases when the session key being transported is less than 256 bits in
length, it is contained in the least significant bits of the ESK field, with the most significant bits being
padded with zeros (before encryption).

5) Reserved bytes are set to 6A hex, reserved bit fields less than 1 byte in length are set to all zeros.

6) The reserved bits included after the 4-bit Bank ID field are provided so that the KN and ESK fields are
aligned on 16 bit boundaries, to simplify high speed implementations.

5.1.7.2.1.2. Data Integrity SKE OAM Cell Format
The format of the Data Integrity SKE OAM Cell is defined in Figure 33, except that the Function ID field is
set to 0010 (binary).
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5.1.7.2.2.  Real Time Security OAM Cell Formats

Real Time (RT) security OAM cells are defined as having an OAM function type of 0010 (binary).  Up to
16 RT cell types are possible, as defined by the Function ID field.  The code points for the Function ID
field for RT security cells are defined in Table 11.

Table 11: Function ID Code Points for Real Time Security OAM Cells.

Function ID
(binary)

Security Function

0001 Data Confidentiality Session Key Changeover (SKC)
0010 Data Integrity Session Key Changeover (SKC)

all others not defined

5.1.7.2.2.1. Data Confidentiality SKC OAM Cell Format
The format of the Data Confidentiality SKC OAM Cell is defined in Figure 34.

          __________________________________________________
          |Bit|Bit|Bit|Bit|Bit|Bit|Bit|Bit| Byte |  Descrip |
          | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  #   |          |
          |___|___|___|___|___|___|___|___|______|__________|
          | GFC/VPI[11:8] |   VPI[7:4]    |  1   | ATM addr |
          |_______________|_______________|______|__________|
          |   VPI[3:0]    |   VCI[15:12]  |  2   | ATM addr |
          |_______________|_______________|______|__________|
          |          VCI[11:4]            |  3   | ATM Addr |
          |_______________________________|______|__________|
          |   VCI[3:0]    |   PTI   | CLP |  4   | Addr,PTI |
          |_______________|_________|_____|______|__________|
          |          HEC[7:0]             |  5   | Header Ck|
          |_______________________________|______|__________|
          |  1  1  1  1   |  0  0  1  0   |  6   |OAM+F type|
          |_______________|_______________|______|__________|
          |  Relative ID  |  0  0  0  1   |  7   | RID,FID  |
          |_______________|_______________|______|__________|
          |    Bank ID    |   Reserved    |  8   | BID,RES  |
          |_______________|_______________|______|__________|
          |            Reserved           |  9   | Reserved |
          |_______________________________|______|__________|
          |           Key Number          | 10-13|    KN    |
          |_______________________________|______|__________|
          |        State Vector (SV)      | 14-21|    SV    |
          |_______________________________|______|__________|
          |         Reserved              | 22-51| Reserved |
          |_______________________________|______|__________|
          |  0  0  0  0  0  0  | CRC[9:8] |  52  | 0 , CRC  |
          |____________________|__________|______|__________|
          |          CRC-10 [7:0]         |  53  | CRC-10   |
          |_______________________________|______|__________|

Figure 34.  Session Key Changeover (SKC) OAM Cell Format.

Notes:

1) The use of the Relative ID field is defined in Section 5.1.7.3.

2) The Bank ID field is an alternating pattern of 0 hex or F hex, for successive key updates.
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3) The key number (KN) field, a 32-bit field, indicates the key number associated with the new session
key. Each session key is assigned a number. The first session key to be exchanged by the session key
update protocol is assigned 1; the second session key is assigned 2, and so forth.

4) The State Vector (SV) contains the new state vector when using the counter mode of the Data
Confidentiality service, or it is set to all zeros otherwise.

5) Reserved bytes are set to 6A hex, reserved bit fields less than 1 byte in length are set to all zeros.

6) The reserved bits included after the 4-bit Bank ID field are provided so that the KN and SV fields are
aligned on 16 bit boundaries, to simplify high speed implementations.

5.1.7.2.2.2.  Data Integrity SKC OAM Cell Format
The format of the Data Integrity SKC OAM Cell is defined in Figure 34, except that the Function ID field is
set to 0010 (binary).

5.1.7.3. Use of the Security OAM Cell Relative ID Field

The security OAM cell’s relative ID (or RID) field is used to support symmetric nesting of security agents
and/or security services.  Security OAM cells provide a means of communication between security agents
throughout the lifetime of a connection. The relative ID field provides the mechanism to indicate which
security agent a particular OAM cell applies to, when nesting is employed.  Up to 16 layers of nesting are
supported.

There are several potential uses for nested security agents.  The primary one is to provide different security
“domains” within a network, where an inner domain might provide different security characteristics  than an
outer domain.  By allowing nesting, users in the outer domain can share the same network as the inner
domain users.  Nesting can also be used to combine security functions that happen to use separate security
agents (e.g., privacy and integrity).  Figure 35 shows an example of nested security agents and the effect on
the relative id (RID) field.

Sec urity  A gent  A

S ec urity  D om ain A

S ec urity  D om ain B

R ID  = 0001

R ID  = 0000

Plaintext
Inter face

C ipher text
Inter face

Sec urity  Agent  B S ec urit y  Agent  C Sec urity  A gent  D

Plaintext
Inter face

Plaintext
Inter face

Plaintext
Inter face

C ipher text
Inter face

C ipher text
Inter face

C ipher text
Inter face

R ID  = 0000

R ID = 0000R ID  = 0000

R ID  = 0001 R ID = 0000R ID  = 0000

Figure 35.  Example of Nested Security Agents.

The procedures for processing security OAM cells are described in Sections 5.1.7.3.1, 5.1.7.3.2, and
5.1.7.3.3. These procedures apply only to those security agents that insert and/or terminate security OAM
cells for purposes of key update or cryptographic resynchronization.  Security agents not performing these
functions shall pass security OAM cells transparently.

Implementations containing multiple security services in a single physical device, e.g. integrity and
encryption, shall treat each service as a separate logical entity with regards to RID processing.
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A security agent contains two interfaces: plaintext and ciphertext.  The plaintext interface is the
interface over which the “unprotected” traffic is transmitted or received.  A security agent receives
“unprotected” ATM traffic on its plaintext interface, applies security services to the traffic, and
forwards the “protected” traffic via the ciphertext interface.  A security agent receives protected
ATM traffic on its ciphertext interface, removes the security protection and forwards the
“unprotected” traffic over its plaintext interface.  Security OAM cells flow in both the plaintext-to-
ciphertext direction and ciphertext-to-plaintext direction.  The procedures for processing the
relative ID field depend on the direction of the Security OAM cell flow.

5.1.7.3.1.  Initiation of Security OAM Cells

The following procedures apply to source security agents that insert security OAM cells.

Security OAM cells are introduced by security agents through the ciphertext interface.  When a
security OAM cell is injected into the cell stream by a security agent (for cryptographic
resynchronization or key update purposes), the relative ID shall be set to zero.

5.1.7.3.2. Processing for Security OAM Cells Received on the Plaintext Interface

Security OAM cells will be received on the plaintext side of a security agent if there are two or
more nested pairs of security agents providing confidentiality or integrity services on a given
connection.  A security agent which receives a Security OAM cell on its plaintext interface, with
the Function ID matching the service the source SA is providing, shall increment the relative ID by
one, compute a new CRC-10 over the cell contents, circumvent the security function, and forward
the cell to the ciphertext interface.  The relative order of the security OAM cell and other cells on
the connection shall not be perturbed.  If the relative ID field of a received security OAM cell
contains all ones, the cell is discarded.

5.1.7.3.3. Processing for Security OAM Cells Received on the Ciphertext Interface

A Security OAM cell received on the ciphertext interface is intended for the security agent if the
relative ID field is set to zero.  If the relative ID is set to zero the security agent shall remove the
security OAM cell from the cell stream and use its contents to perform the security OAM function.
If the relative ID is set to a value other than zero, the security agent shall decrement the relative ID,
compute a new CRC-10 over the cell contents, circumvent the security function, and forward the
cell through the plaintext interface.  The relative order of the security OAM cell and other cells on
the connection shall not be perturbed.

5.2. Key Exchange

5.2.1. Key Exchange Infrastructure and Mechanisms

The ATM key exchange protocol is described in the context of “security message exchange protocol” in
Section 5.1. Key exchange is performed by generating initial session keys for each direction in the VC and a
shared master key. These keys are encrypted for exchange using an Initial Key Exchange Key.  When using
a public key encryption algorithm such as RSA for key exchange, the Initial Key Exchange Key is the
public key of the recipient. When using a public key development algorithm such as Diffie-Hellman, the
Initial Key Exchange Key is a portion of the shared value developed by the algorithm from the users’ public
keys. When using a symmetric key algorithm, the Initial Key Exchange Key is a shared secret key
established prior to key exchange.
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5.2.2. Key Exchange Algorithms

Key exchange is performed using either symmetric (secret) key algorithms such as DES or asymmetric
(public) key algorithms such as RSA. If a symmetric key algorithm is used, the two nodes must have already
established a shared secret key.  With asymmetric algorithms, on the other hand, each node need only know
the public key of the other node.

Note that the generation, distribution, and storage of these (usually long-lived) secret, private, and/or public
keys is outside the scope of this specification.

Associated with each algorithm is a codepoint that is used for identification when negotiating security
options. These codepoints are listed in Section 6.1. Procedures for using user-defined algorithm codepoints
are also described in Section 6.1.

The following apply when performing key exchange:

• When performing user plane key exchange, one of the authentication and key exchange protocols
described in Section 5.1 shall be used.

• When performing key exchange, an authentication algorithm (either user-defined, or listed in Section
3.1) shall be used.

5.2.2.1. Asymmetric Algorithms for Key Exchange

The following asymmetric (public-key) algorithms are defined in this specification for key exchange.

Algorithm Normative Reference
RSA [[24]
Diffie-Hellman Section 6.8.4
ECKAS-DH Section 6.9.5

For Diffie-Hellman Key Exchange, the size of the modulus (p) shall be one of the following: 512, 768,
1024, or 2048 bits.

5.2.2.2. Symmetric Algorithms for Key Exchange

The following symmetric (secret-key) algorithms are defined in this specification for key exchange.

Algorithm Normative Reference
DES (in CBC mode) [6], [7]
DES40 (in CBC mode) Section 6.7
Triple DES (in CBC mode) [25], [7]
FEAL (in CBC mode) [32], [33], [7]

5.2.3. Generation of Master Keys

A Master Key is a key used between security agents for encrypting and decrypting session keys after initial
connection establishment.  Master Keys are generated during the security message exchange protocol
described in Section 5.1.  A single Master Key is used for both full duplex and simplex (e.g., point-
multipoint) calls. Master Keys can be developed with public key encryption algorithms, e.g., RSA, or with
public key development algorithms, e.g., Diffie-Hellman.  The procedures for generating the Master Key
with public key encryption algorithms and public key development algorithms are slightly different.  The
maximum size of a Master Key is 256 bits.
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5.2.3.1. Master Keys on Point-To-Point Connections

To develop the Master Key for point-to-point connections using a public key encryption algorithm, e.g.,
RSA, 128 bit random values are selected by both the initiator and responder.  These 128 bit values are
exchanged in the Master Key octet group of the Confidential parameters (Section 6.2.4.1).  The exchanged
values are decrypted and concatenated to form the Master Key.  The concatenation is performed as follows:
the initiator value forms the most significant or leftmost half, and the responder value forms the least
significant or rightmost half.

To develop the Master Key for point-to-point connections using a public key development algorithm, e.g.,
Diffie-Hellman, the low order 256 bits of the resultant shared secret value is the Master Key.  The Master
Key octet group is not required and will not be included in the Confidential Parameters.   To accommodate
this procedure, and also for security reasons, the modulus size for the Diffie-Hellman algorithm shall be at
least 512 bits, and the modulus size for the Elliptic Curve Key Agreement Scheme-Diffie Hellman
algorithm shall be at least 130 bits. The Initial Key Exchange Key is then set equal to the Master Key value
and used as input to the Zmask algorithm for encryption of the Confidential Parameters.

5.2.3.2. Master Keys on Point-To-Multipoint Connections

For the case of point-to-multipoint calls, the addition of leaf nodes is handled differently than the initial call
setup.  This is because the Master Key for the connection has already been established (as described above),
and need only be distributed to the new leaves.

When using public key encryption algorithms (e.g., RSA) the Master Key is encrypted in the responder’s
public key by the initiator and sent to the leaf as described in Section 5.1.

When using a public key development algorithm (e.g., Diffie-Hellman) the Master Key for the point-
multipoint connection is encrypted using the Zmask algorithm defined in Section 6.8.4.1.  The Initial Key
Exchange Key used in the encryption algorithm (as an input to the hash) for subsequent leaves after the
initial call setup must be pre-established.  The pre-establishment of this key can be performed either through
manual configuration or through prior key exchange.  In both cases the encrypted Master Key for the
connection is sent in the ConfPar token, along with the encrypted session key.

5.2.4. Generation of Initial Session Keys

Session keys are the keys used by the encryption algorithm for the data confidentiality service, or the
integrity algorithm for the data integrity service.  The two security agents involved in a security exchange
randomly create session keys, and they are encrypted and transferred using the security message exchange
protocol.  The method used to encrypt the initial session keys is different when using public key encryption
algorithms than it is when using public key development algorithms.

When using public key encryption algorithms or public key development algorithms, Initial Session Keys
(ISKs) for confidentiality and/or integrity are created using a random number generator, and are exchanged
in the session key octet group of the Confidential Parameters octet group.  The Confidential Parameters
octet group is encrypted in the other party’s public key if using a public key encryption algorithm.  If using
a public key development algorithm, the Confidential Parameters octet group containing the ISKs is
encrypted in the shared Initial Key Exchange Key.  This is accomplished by performing the Zmask
operation, as specified in Section 6.8.4.1, on the Initial Key Exchange Key and using the Zmask value to
encrypt the Confidential Parameters.

For simplex calls (e.g., pt-mpt) only a single session key is needed.  This key is always provided by the SA
providing security for the root on pt-mpt calls, and by the SA providing security for the node which is
generating the traffic on the simplex connection., i.e., the node which has bandwidth allocated in the
forward direction. The ConfPar token is sent in both directions for simplex connections, but only one value
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is used; the other discarded.   For full duplex calls, separate initial session keys and initialization vectors
shall be used in each direction.

5.2.5. Error Processing

Error processing for the key exchange service is described in the context of the security message exchange
protocol in Section 5.1.

5.3. Session Key Update

5.3.1. Session Key Update Protocol

When the initiator (or responder) wants to use a new session key, it sends key update OAM cells within the
user data stream to exchange the new session key with the remote partner and to indicate to the remote
partner when to start using the new session key. The key update OAM flows are end-to-end F4 flows for
VPCs and end-to-end F5 flows for VCCs, respectively.

The session key update protocol involves two processes: exchanging a new session key between the initiator
and responder, and changing over from the old session key to the new session key.  The first process is
referred to as “session key exchange” (SKE) and the second process is referred to as “session key
changeover” (SKC). The format for these OAM cells is defined in Section 5.1.7.

In order to change keys at high speeds, without disrupting service to the end user, two session keys are
required: a current-key and a next-key. The next-key is delivered from the source to the destination using
the SKE cell.  The destination stores the next-key in a separate memory location until needed.  The Bank ID
and/or key number fields in the SKE cell are used to identify the next-key (with respect to the current key).
The actual changeover occurs when the SKC cell is sent.

The process of performing key updates is independent in each direction of data flow, for full duplex
connections.  It is the responsibility of the source (e.g., the encrypting side of the data confidentiality
service) of each data flow to initiate the key update in its direction. In point-to-multipoint connections there
are one source and multiple destinations. Since point-to-multipoint connections are one-directional (from
the source to destinations), only the root updates the session key, and the same session key is used by the
root as well as all the leaves.

5.3.1.1. Session Key Exchange (SKE) Process

The SKE OAM cell is used to securely transfer the next session key from the source to the destination(s).
Each key update uses a sequential key number for synchronization between the source and destination(s), as
well as for cryptographic protection.  A 32 bit numbering scheme is used, which means that 232 - 1 session
key updates can be performed on a connection before the key number wraps around (which will not happen
in 2500 years even if the session key is updated every hour).

The next session key is encrypted using the master key obtained during secure call establishment. This is a
32-byte (or 256 bit) field that provides sufficient length for all session key lengths currently identified, with
room for growth in the future. The actual length of the information in this field is dependent on the session
key length of the algorithm being used.

The SKE process is derived from the method described by Bird, et al. in [27].  The process is defined using
both the MD5 and SHA-1 hash functions.  The determination of which to use is negotiated during secure
call establishment.
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5.3.1.1.1.  SKE Processing at the source (or key update initiator)

Given a shared secret “master key” that is exchanged using the authentication/key exchange protocol at
connection establishment time, the source can inform the destination(s) of a new session key that will be
used for subsequent data traffic. When the source wants to send a new session key to the destination(s), it
invokes the SKE process.

The format of the SKE OAM cell is defined in Section 5.1.7.2.1.1.  The Bank ID is a 4-bit binary
indication, coded as all zeros or all ones, which indicates the bank associated with the next session key.
The key number (KN) is a 4-byte field, which indicates the key number associated with the new session key.
Each session key is assigned a number. The first session key to be exchanged by the session key update
protocol is assigned 1; the second session key is assigned 2, and so forth (using binary unsigned coding).

The key number field is used to maintain key update synchronization between the source and destination
(i.e., to ensure both ends are using the same session key).  In addition it is cryptographically protected to
ensure freshness, uniqueness, and ordering of session key updates.  This protection is described below.

The following procedure is used to generate the SKE OAM cell. It is assumed that the source A shares a
secret master key, Km,AB, with the destination B. In a point-to-multipoint connection, it is assumed that the
same master key is shared by the source and all the destinations.

A generates the new Bank ID = current Bank ID ⊕  0F hex.

A increments its key number (i.e., KNA) by one.  KNA is set to 0 at the time the connection is established.

A generates a new session key Ks,AB . This session key is generated randomly, and is checked to ensure it is
not “weak” (with respect to the data confidentiality algorithm or the data integrity algorithm).

A encrypts the session key under the master key as defined in section 6.8.5 or 6.8.6.

Each source shall insure that the combination of the master key and the key number are locally unique for
each key update, to maintain the strength of the security.  This does not include the extremely rare case
when randomly generated master keys might happen to be identical.

A sends the Bank ID, key number (i.e., KNA), and the encrypted session key (i.e., Enc (K )K s,ABm,AB
) to B in

the SKE OAM cell. The session key, Ks,AB, can have any length up to 256 bits (which is the length of the
encrypted session key field of the SKE OAM).  For cases when it is less than 256 bits long, the key shall
reside in the low order bits, and the high order bits shall be set to zero.  For Triple DES keys (using the
Ek1(Dk2(Ek1())) convention), the k2 key shall use the low order 64 bits, and the k1 key the next higher 64
bits.

Note that the old session key remains “active” at the source and destination(s) until session key changeover
(SKC) is performed. The SKE OAM cell may get lost and the source will not be able to detect that (since
there is no acknowledgment). To improve the probability that the session key exchange is successful, the
source shall transmit the SKE OAM cell at least three (3) times for LSKE seconds. The value of LSKE is an
implementation parameter and need not be standardized.

5.3.1.1.2. SKE Processing at the Destination (or Key Update Responder)

Upon receipt of an SKE OAM cell, the destination B extracts the Bank ID, key number KNA, and the
encrypted session key, and performs the following steps:

Verifies the 10-bit OAM cell CRC is correct, and discards the cell if it is not.

Checks the received KNA. If this is the first session key received from A in a SKE OAM cell, the key
number is valid if it is greater than or equal to one. If this is not the first session key received from A in a
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SKE OAM cell, the key number is valid only if it is greater than the key number associated with the most
recent (i.e., the previous) session key received from A.  If these tests fail, then the SKE OAM cell is
discarded and no further action is taken.

If the key number is valid, then B recovers the new session key by:

K = Enc (K ) Masks,AB K s,ABm,AB

The mask is computed as defined in section 6.8.5 using MD5, or section 6.8.6 for SHA-1.

The recovered key (or next-key) is stored in memory, until the corresponding SKC cell is received.  The
Bank ID, the KN, or both can be used to access the next-key.

5.3.1.2. Session Key Changeover (SKC) Process

After the SKE process is completed from the source point of view (i.e., after the SKE OAM cell is
transmitted multiple times for LSKE seconds), the source invokes the session key changeover process to
indicate to the destination(s) when to start using the new session key.  The format of the SKC cell shall be
as shown Section 5.1.7.2.2.1.

The source sends the SKC OAM cell that instructs the destination(s) to start using the new session key on
the cells following the SKC OAM cell.  The SKC OAM cell carries the key number associated with the new
session key to which the destination(s) shall switch.  The SKC OAM cell is sent multiple times to guarantee
receipt at the destination(s) in the presence of cell loss. The SKC OAM cell is not cryptographically
protected (since it does not carry any confidential information).

5.3.1.2.1.  SKC Processing at the source (or key update initiator)

The source performs the following steps:

The source shall wait at least 1 second after sending the last SKE cell before sending the corresponding
SKC cell, to allow the destination sufficient time to complete the SKE processing.

The source sets the Bank ID and the KN of the SKC cell to the most recent values sent in the SKE cell.

The source sets the State Vector (SV) of the SKC cell to all zeros, unless the counter mode (of the data
confidentiality service) is being used, in which case the SV is initialized as described in Section 6.4.

The source injects the SKC OAM cell into the connection undergoing key changeover in such a manner that
the session key(s) negotiated by the SKE process and the state vector (if applicable) are used on the next
user cell associated with that connection.  This includes the case when the next user cell on that connection
immediately follows the SKC cell.

Note that in counter mode the SKC cell performs a cryptographic resynchronization as well as a key
changeover.  It is permissible to send an SKC cell expressly for this purpose, without any key changeover.
This is accomplished by setting the Bank ID and key number to the values currently in use.

The SKC OAM cell may get lost and the source will not be able to detect that (since there is no
acknowledgment). To improve the probability that the session key changeover is successful, the source shall
transmit the SKC OAM cell at least three (3) times for LSKC seconds. The value of LSKC is an implementation
parameter and need not be standardized. It is also permissible to insert several SKC cells back-to-back.  The
value of LSKC is an implementation parameter and need not be standardized.

As stated previously, multiple SKC cells are inserted in anticipation of cell loss.  It is important to clarify
that for the counter mode, the state vector will be different each time the SKC cell is sent if any user cells
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occur in the interim.  If no user cells occur between SKC cells (e.g., back-to-back SKC cells), this field
remains unchanged.

5.3.1.2.2.  SKC Processing at the destination (or key update responder)

Upon receipt of an SKC OAM cell, the destination extracts the Bank ID, key number, and state vector (if
applicable) and performs the following steps:

The destination verifies that the 10-bit OAM cell CRC is correct, and discards the cell if it is not.

The destination shall process the SKC OAM cell on the connection undergoing key changeover in such a
manner that the session key negotiated by the SKE process and the state vector (if applicable) included in
the SKC cell itself are used on the next cell received on that connection.  This includes the case when this
cell immediately follows the SKC cell.

The destination shall use either the Bank ID or the key number to access the session key negotiated by the
SKE process and put it in place for use by the next user cell.

If the counter mode (of the data confidentiality service) is being used, the state vector shall be initialized as
described in Section 6.4.4.3. For CBC or ECB modes, the state vector field is not used.

Note the SKC cell also performs a cryptographic resynchronization in the counter mode case.

5.3.1.3. Session Key Exchange Algorithms

Associated with each algorithm is a codepoint that is used for identification when negotiating security
options. These codepoints are listed in Section 6.1. Procedures for using user-defined algorithm codepoints
are also described in Section 6.1.

The following algorithms are defined in this specification for session key exchange.

Algorithm Normative Reference
MD5 Section 6.8.5
SHA-1 Section 6.8.6
RIPEMD-160 Section 6.8.6, [18]

5.4. Certification and Certificate Revocation Lists

The security message exchange protocol described in Section 5.1 also provides for the exchange of public
key certificates.

The X.509 v1 certificate shall be used for ATM certification when certificate exchange is performed in the
signaling channel.  When certificate exchange is performed in-band (in the user data channel), one of the
X.509 v1, v2, and v3 certificates shall be used.
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6. Normative Annex

6.1. In-Band Security Message Exchange Finite State Machines
(FSMs)

The Finite State Machines (FSMs) described in this section specify the intended behavior for the in-band
security message exchange protocol.  These FSMs correspond to the textual procedures described in
Section 5.1.5.3 of this specification. If there are any discrepancies between the textual procedures and the
FSM tables, the FSM tables shall take precedence.

The FSMs covers two potential configurations:

1. Initiator of security message exchange,
2. Responder to security message exchange.

The FSMs are described in five sections:

1. The FSM Graphical Views are shown in Section 6.1.1.
2. All FSM States are described in section 6.1.2.
3. All FSM Events are described in section 6.1.3.
4. All FSM Actions are described in section 6.1.4.
5. The FSM Summary Tables are shown in section 6.1.5.

6.1.1. FSM Graphical View

Figure 36 show the Initiator FSM Graphical View.

Figure 37 shows the Responder FSM graphical view.

The FSM Graphical View is intended as a complement to the FSM Summary Table. If conflicts between the
FSM Summary Table and the FSM Graphical View exist, the FSM Summary Table will take precedence.
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S1-I: IDLE S2-I: Setup
Initiated

S3-I: Waiting  for
Confirm

S4-I: Operating at
Initiator

S5-I: Failed at
Initiator

E1: Secure Request
A7: Initialize count
A2: Send FLOW1
A1: Start T100

E2: FLOW2
A3: Stop T100
A5: Send FLOW3
A4: Start T101

E5: T100 Expires
A8: Increment retry
A10: Compare Retry
        to Max
A2: Send FLOW1
A1: Start T100

E4: Retry Exceeded
A9: Send FAULT

E6: T101 Expires
A9: Send FAULT

E3: CONFIRM-AP
A6: Stop T101

E7:FAULT

E7:FAULT

E8: FLOW2 invalid
A9: Send FAULT
A3: Stop T100

E2: FLOW2
A5: Send FLOW3
A4: Start T101

Figure 36.  Initiator FSM.
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S1-R: IDLE S2-R: Exchanging
Security Param

S3-R:  Operating
at Responder

S4-R: Failed at
Responder

E1: FLOW1
A5: Initialize Count
A2: Send FLOW2
A1: Start T102 Timer

E2: FLOW3
A3: Stop T102
A4: Send CONFIRM-AP

E4: T102 Expires
A6: Increment
      FLOW2 Count
A8: Compare Count to
       Max
A2: Send FLOW2
A1: Start T102 Timer

E3: Retry Exceeded
A7: Send FAULT

E5:FAULT

E7: Invalid FLOW3
A7: Send FAULT

E6 :Invalid FLOW1
A7: Send FAULT

Figure 37.  Responder FSM.
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6.1.2. FSM States

Table 12: States

INITIATOR -I
Number Name Messages

Outstanding
Description

S1 -I Idle None No requests for secure connection outstanding
• This is always the first initiator state
• Waiting to start operation

S2 -I  Setup
Initiated

 FLOW1  Initiator has initiated a secure connection by sending a
FLOW1 to the responder

S3 -I  Waiting for
Confirma-
tion

 FLOW3  Initiator has sent a FLOW3 to the Responder and is
waiting for the Responder to confirm completion of the
message exchange

S4 -I  Operating at
Initiator

 None  Initiator has made the connection available to the user

S5 -I Failed Error occurred during the message exchange protocol.
For errors detected at the initiator:
• A FAULT message is sent to the responder

 RESPONDER  -R   
 Number
 

 Name  Messages
Outstanding

 Description

 S1-R  Idle  None  No requests for secure connection outstanding
• This is always the first responder state
• Waiting to start operation

 S2-R  Exchanging
Security
Parameters

 FLOW2  Responder has replied to the initiator’s request with a
FLOW2 message.

 S3-R  Operating at
Responder

 None  Responder has made the connection available to the
user

 S4-R  Failed   Error occurred during the message exchange protocol.
For errors detected at the responder:
• A FAULT message is sent to the initiator
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6.1.3. FSM Events

Table 13: Events

INITIATOR
Number Name Description
E1  Secure Request  The initiator has been requested to secure a connection
E2 Valid FLOW2

Received
FLOW2 message has been received
• this event is expected

E3 CONFIRM-AP
Received

CONFIRM-AP message has been received
• this event is expected

E4 I-FLOW1 Retry
Count Exceeded

Initiator has sent FLOW1 the maximum number of times as defined in
section 5.1.5.3, Table 8
• this event results in a fault at the initiator

E5 T100 Expires Timer 100 has exceeded time shown in section 5.1.5.3, Table 7
• this event results in a fault at the initiator

E6 T101 Expires Timer 101 has exceeded time shown in section 5.1.5.3, Table 7
• this event results in a fault at the initiator

E7 FAULT Received FAULT message has been received
• this event indicates to the initiator that the responder has gone to the

Fault state and the reason code
E8 Invalid FLOW2

Received
FLOW2 message with errors has been received
• this event results in a fault at the initiator

RESPONDER
Number Name Description
E1 Valid FLOW1

Received
FLOW1 message has been received
• this event is expected at the responder

E2 Valid FLOW3
Received

FLOW3 message has been received
• this event is expected at the responder

E3 R-FLOW2 Retry
Count Exceeded

Responder has sent FLOW2 the maximum number of times as defined in
section 5.1.5.3, Table 8
• this event results in a fault at the responder

E4 T102 Expires Timer 102 has exceeded time shown in section 5.1.5.3, Table 7
• this event results in a fault at the responder

E5 FAULT Received FAULT message has been received
• this event indicates to the responder that the initiator has gone to the

Fault state and the reason code
E6 Invalid FLOW1

Received
FLOW1 message with errors has been received
• this event results in a fault at the responder

E7 Invalid FLOW3
Received

FLOW3 message with errors has been received
• this event results in a fault at the responder
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6.1.4. FSM Actions

Table 14: Actions

INITIATOR
Number Name Description
A1  Start T100 Timer  Start timer T100
A2  Send FLOW1  Send a FLOW1 message from initiator to responder
A3  Stop T100 Timer  Stop timer T100
A4  Start T101 Timer  Start timer T101
A5  Send FLOW3  Send a FLOW3 message from initiator to responder
A6  Stop T101 Timer  Stop timer T101
A7  Initialize FLOW1

count
 Set FLOW1 retry counter to 0

A8  Increment
FLOW1 retry

 Increment the counter for the number of times FLOW1 message has been
sent

A9  Send FAULT  Send a FAULT message from initiator to responder
A10 Compare to Max Compare the FLOW1 sent count to the Maximum Retry Value

RESPONDER
Number Name Description
A1  Start T102 Timer  Start timer T102
A2  Send FLOW2  Send a FLOW2 message from responder to initiator
A3  Stop T102 Timer  Stop timer T102
A4  Send CONFIRM-

AP
 Send a CONFIRM-AP message from responder to initiator

A5  Initialize FLOW2
count

 Set FLOW2 retry counter to 0

A6  Increment
FLOW2 retry

 Increment the counter for the number of times FLOW2 message has been
sent

A7  Send FAULT  Send a FAULT message from responder to initiator
A8 Compare to Max Compare the FLOW2 sent count to the Maximum Retry Value
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6.1.5. FSM Summary Table

Table 15: Indicator Summary.

States x
Events:

S1-I S2-I S3-I S4-I S5-I

E1  A7, A2, A1
 S2-I

 N/A  N/A  N/A  N/A

E2  N/A  A3, A5, A4
 S3-I

 A5, A4
 S3-I

 N/A  N/A

E3  N/A  N/A  A6
 S4-I

 N/A  N/A

E4  N/A  A9
 S5-I

 N/A  N/A  N/A

E5  N/A  A8, A10, A2,A1
 S2-I

 N/A  N/A  N/A

E6  N/A  N/A  A9
 S5-I

 N/A  N/A

E7  N/A  S5-I  S5-I  N/A  N/A
E8 N/A A9, A3

S5-I
N/A N/A N/A

Table 16: Responder Summary.

States x
Events:

S1-R S2-R S3-R S4-R

E1  A5, A2, A1
 S2-R

 N/A  N/A  N/A

E2  N/A  A3, A4
 S3-R

 N/A  N/A

E3  N/A  A7
 S4-R

 N/A  N/A

E4  N/A  A6, A8, A2, A1
 S2-R

 N/A  N/A

E5  N/A  S4-R  N/A  N/A
E6  A7

 S4-R
 N/A  N/A  N/A

E7 N/A A7
S4-R

N/A N/A

6.2. Security Service Data Primitives

6.2.1. Security Agent Identification Primitives

This document specifies the use of “distinguished names” for initiating, responding, and explicitly targeted
security agents.  The distinguished name shall be a globally unique identifier for the security agent.  There
are two distinguished name formats specified here: the X.509 distinguished name and the globally-unique
ATM address of the ATM network element that hosts the security agent.  There are currently no
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conventions for X.509 distinguished names for security agents; furthermore, X.509 distinguished names can
be long–possibly long enough to limit their use to the in-band message exchange.

6.2.1.1. Initiator Distinguished Name

This octet group contains the Distinguished Name (ID) of the initiating security agent in a Security Message
Exchange.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 0 0 0 1 0

Initiator Distinguished Name Identifier x.1
Initiator Distinguished Name Length x.2
Initiator Distinguished Name Type x.3
Initiator Distinguished Name Value x.4 etc.

Initiator Distinguished Name Length (Octet x.2)

A binary number indicating the length in octets of the Initiator distinguished
name type and value fields, contained in octets x.3, x.4, etc.

Initiator Distinguished Name Type (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 X.509 Distinguished Name
0   0   0   0   0   0   1   0 ATM End System Address

Initiator Distinguished Name Value (Octet x.4 etc.)

This octet group contains the value of the distinguished name (ID) of the
Initiator of the Security Message Exchange Protocol.

X.509 Distinguished Name

This document does not specify naming conventions for security agents.
However, it is anticipated that those conventions will be developed and that
X.509 distinguished names will need to be passed in security messages.  The
coding and length of this field shall be determined by the coding and length of
the same names when carried in X.509 certificates–that is, according to the Basic
Encoding Rules (BER, ISO 8825),with the restrictions imposed by X.509 to
make BER deterministic.

ATM End System Address (AESA)

This field contains the ATM address associated with the Initiator.  The address is
coded as described in ISO 8348, Addendum 2, using the preferred binary
encoding.  For further details on using this field, consult Section 3.0 of [3].
When these addresses need to be used in X.509 certificates, the following ASN.1
production shall be used to define the attribute used for the distinguished name:
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aTMAddress ATTRIBUTE         ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SUBSTRINGS MATCHING RULE octetSubstringsMatch

ID       ...aTMAddress }

6.2.1.2. Responder Distinguished Name

This octet group contains the Distinguished Name (ID) of the responding security agent in a Security
Message Exchange.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 0 0 0 1 0

Responder Distinguished Name Identifier x.1
Responder Distinguished Name Length x.2
Responder Distinguished Name Type x.3
Responder Distinguished Name Value x.4 etc.

Responder Distinguished Name Length (Octet x.2)

A binary number indicating the length in octets of the Responder distinguished
name type and value fields, contained in octets x.3, x.4, etc.

Responder Distinguished Name Type (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 X.509 Distinguished Name
0   0   0   0   0   0   1   0 ATM End System Address

Responder Distinguished Name Value (Octet x.4 etc.)

This octet group contains the value of the distinguished name (ID) of the
Responder of the Security Message Exchange Protocol.

X.509 Distinguished Name

This document does not specify naming conventions for security agents.
However, it is anticipated that those conventions will be developed and that
X.509 distinguished names will need to be passed in security messages.  The
coding and length of this field shall be determined by the coding and length of
the same names when carried in X.509 certificates–that is, according to the Basic
Encoding Rules (BER, ISO 8825),with the restrictions imposed by X.509 to
make BER deterministic.

ATM End System Address (AESA)

This field contains the ATM address associated with the Responder.  The
address is coded as described in ISO 8348, Addendum 2, using the preferred
binary encoding.  For further details on using this field, consult Section 3.0 of
[3].  When these addresses need to be used in X.509 certificates, the following
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ASN.1 production shall be used to define the attribute used for the distinguished
name:

aTMAddress ATTRIBUTE         ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SUBSTRINGS MATCHING RULE octetSubstringsMatch
ID       ...aTMAddress }

6.2.1.3. Security Agent Identifier

This octet group contains the distinguished name (ID) of the explicitly targeted security agent in a Security
Message Exchange.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 0 0 0 1 0

Security Agent Distinguished Name Identifier x.1
Security Agent Distinguished Name Length x.2
Security Agent Distinguished Name Type x.3
Security Agent Distinguished Name Value x.4 etc.

Security Agent Distinguished Name Length (Octet x.2)

A binary number indicating the length in octets of the Security Agent
distinguished name type and value fields, contained in octets x.3, x.4, etc.

Security Agent Distinguished Name Type (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 X.509 Distinguished Name
0   0   0   0   0   0   1   0 ATM End System Address

Security Agent Distinguished Name Value (Octet x.4 etc.)

This octet group contains the value of the distinguished name (ID) of the
Security Agent of the Security Message Exchange Protocol.

X.509 Distinguished Name

This document does not specify naming conventions for security agents.
However, it is anticipated that those conventions will be developed and that
X.509 distinguished names will need to be passed in security messages.  The
coding and length of this field shall be determined by the coding and length of
the same names when carried in X.509 certificates–that is, according to the Basic
Encoding Rules (BER, ISO 8825),with the restrictions imposed by X.509 to
make BER deterministic.

ATM End System Address (AESA)

This field contains the ATM address associated with the security agent.  The
address is coded as described in ISO 8348, Addendum 2, using the preferred
binary encoding.  For further details on using this field, consult Section 3.0 of
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[3].  When these addresses need to be used in X.509 certificates, the following
ASN.1 production shall be used to define the attribute used for the distinguished
name:

aTMAddress ATTRIBUTE         ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SUBSTRINGS MATCHING RULE octetSubstringsMatch
ID       ...aTMAddress }

6.2.2. Security Service Specification Section

The Security Service Specification Section provides a description of the security services that are requested
for a particular security association.  Services are specified in two ways, through either a Security Service
Declaration, and/or through a specific Security Service Option and Description.  The Security Service
Declaration, provided as a concise method of declaring to a peer or proxy security agent the services that
will be used on the VC, is usually used when the SME will occur In-Band.  The Security Service Option
and Description Sections are designed for detailed security service declaration and negotiation.  The Option
is used to declare the required security service, the Description is used to specify in detail the specific
service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 0 1 0 0 0

Security Service Specification Section Identifier x.1

Security Service Declaration Section x.2 etc*

Security Service Option Section x.3 etc*

Security Service Algorithm Section x.4 etc*

Security Service Declaration Section (Octet Group x.2)

This optional octet group declares the specific security services that are
requested for a VC.  Details are found below.

Security Service Option Section (Octet Group x.3)

This optional octet group indicates specific options for the indicated security
service.  Details are found below.

Security Service Algorithm Section (Octet Group x.4)]

This octet group describes the details of security service algorithms for the
indicated security service.  Details are found below.

6.2.2.1. Security Service Declaration

The Security Service Declaration Section provides a minimal description of the security services that are
requested/supported by a security agent.  The Security Service Declaration can be employed with in-band
security message exchange.  In this situation, the security service will be negotiated after the VC is
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established.  This method of declaring the security service can be employed when communicating a security
requirement to a proxy security agent.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 0 1 0 1 0

Security Service Declaration Identifier x.1

Security Service Declaration
x x x x x x x x x.2

Security Service Declaration (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Unspecified
0   0   0   0   0   0   0   1 Confidentiality Service
0   0   0   0   0   0   1   0 Integrity Service
0   0   0   0   0   1   0   0 Authentication Service
0   0   0   0   1   0   0   0 Key Exchange Service
0   0   0   1   0   0   0   0 Certificate Exchange Service
0   0   1   0   0   0   0   0 Session Key Update Service
0   1   0   0   0   0   0   0 Access Control Service

6.2.2.2. Security Service Option Primitives

In the 3-way exchange, the initiator indicates what security services are required, what security services can
be supported should the responder requires them, and what security services are not supported for the
connection. In the 2-way exchange, the initiator indicates what security services are required and what
security services are not supported for the connection. In the 3-way exchange, the responder indicates what
security services are required and what security services are not supported for the connection.

6.2.2.2.1.  Data Confidentiality Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 0 0 0

Data Confidentiality Service Option Identifier x.1

Data Confidentiality Service Options
x x x x x x x x x.2

Data Confidentiality Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not Supported
0   0   0   0   0   0   0   1 Supported At ATM Cell Level (Note)
1   0   0   0   0   0   0   1 Required At ATM Cell Level

Note: This codepoint applies only when used by the initiator in FLOW1-3WE.
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6.2.2.2.2.  Data Integrity Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 0 1 0

Data Integrity Service Options Identifier x.1

Data Integrity Service Options
x x x x x x x x x.2

Data Integrity Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not supported
0   0   0   0   0   0   0   1 Supported With Replay / Reordering Protection (Note)
0   0   0   0   0   0   1   0 Supported Without Replay / Reordering Protection (Note)
1   0   0   0   0   0   0   1 Required With Replay/Reordering Protection
1   0   0   0   0   0   1   0 Required Without Replay/Reordering Protection

Note: This codepoint applies only when used by the initiator in FLOW1-3WE.

6.2.2.2.3.  Authentication Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 0 1 1

Authentication Service Options Identifier x.1

Authentication Service Options
x x x x x x x x x.2

Authentication Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not supported
0   0   0   0   0   0   0   1 Supports Authentication (Note)
1   0   0   0   0   0   0   1 Requires Authentication

Note: This codepoint applies only when used by the initiator in FLOW1-3WE.
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6.2.2.2.4.  Key Exchange Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 1 0 0

Key Exchange Service Options Identifier x.1

Key Exchange Service Options
x x x x x x x x x.2

Key Exchange Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not supported
0   0   0   0   0   0   0   1 Supports Key Exchange (Note 1)
0   1   0   0   0   0   0   1 Requires Key Exchange

Note 1: This codepoint applies only when used by the initiator in FLOW1-3WE.

6.2.2.2.5.  Session Key Update Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 1 0 1

Session Key Update Service Options Identifier x.1

Session Key Update Service Options
x x x x x x x x x.2

Session Key Update Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not supported
0   0   0   0   0   0   0   1 Supports Session Key Update (Note)
1   0   0   0   0   0   0   1 Requires Session Key Update

Note: This codepoint applies only when used by the initiator in FLOW1-3WE.

6.2.2.2.6.  Access Control Service Options

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 0 1 0 1 1 0

Access Control Service Options Identifier x.1

Access Control Service Options
x x x x x x x x x.2

Access Control Service Options (Octet x.2)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Not supported
0   0   0   0   0   0   0   1 Supports Access Control (Note)
1   0   0   0   0   0   0   1 Requires Access Control

Note: This codepoint applies only when used by the initiator in FLOW1-3WE to indicate that it
supports access control.
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6.2.3. Security Algorithm Primitives

The security algorithm section specifies the algorithms to be used for the indicated security services.  This
includes the algorithm’s mode of operation that is to be used. In addition, the parameters associated with
each algorithm are also included.

This specification allows for the use of user (or vendor) specified algorithms. If a user (or vendor) specified
algorithm is used, then the optional octet group containing the user’s (or vendor’s) Organizationally Unique
Identifier (OUI) shall be used. The value of the OUI is unique to the user (or vendor), and is assigned by the
Institute for Electrical and Electronics Engineers (IEEE).

6.2.3.1. Data Confidentiality Algorithm

This octet group indicates an algorithm for the data confidentiality service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 0 0 0 0

Data Confidentiality Algorithm Identifier x.1

Length of Data Confidentiality Algorithm Contents x.2

Data Confidentiality Algorithm x.3

OUI x.4 (Note 1)

OUI (continued) x.5 (Note 1)

OUI (continued) x.6 (Note 1)

Data Confidentiality Mode of Operation x.7

OUI x.8 (Note 2)

OUI (continued) x.9 (Note 2)

OUI (continued) x.10 (Note 2)

Data Confidentiality Algorithm Details x.11 etc.

Data Confidentiality Mode Details x.12 etc.

Length of Data Confidentiality Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the data confidentiality
algorithm/mode fields, contained in octets x.3, x.4, x.5 etc.

Data Confidentiality Algorithm (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 DES with 56 bits effective key
0   0   0   0   0   0   1   0 DES with 40 bits effective key
0   0   0   0   0   0   1   1 Triple-DES with 112 bits effective key
0   0   0   0   0   1   0   0 FEAL, N=32, 64 bit key, no key block parity
1   x   x   x   x   x   x   x User-defined data confidentiality algorithm

(the value of bits 1-7 is user-defined)
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OUI (Octets x.4 - x.6)

Note 1: if the data confidentiality algorithm is “user defined,” then the IEEE OUI of the
vendor/user that assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Data Confidentiality Mode of Operation (Octet x.7)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   0 Unspecified
0   0   0   0   0   0   0   1 CBC
0   0   0   0   0   0   1   0 Counter Mode
0   0   0   0   0   0   1   1 ECB
1   x   x   x   x   x   x   x User-defined data confidentiality mode of

operation (the value of bits 1-7 is user-defined)

OUI (Octets x.8 - x.10)

Note 2: if the data confidentiality mode of operation is “user defined,” then the IEEE OUI
of the vendor/user that assigned the user-defined codepoint shall be included in these
octets. Otherwise, these octets are not included.

Data Confidentiality Algorithm Details (Octet x.11 etc)

These octets indicate coding details for each data confidentiality algorithm.
These details are found below:

⇒ DES coding details
 - No further detail is required

⇒ DES40 coding details
Two eight-octet fields are added to the data confidentiality algorithm information
element details. The first eight octets contain a binary encoded 64-bit random
number. The second eight octets contain the binary encoding of that random number
encrypted under the DES40 key in the ECB mode.

⇒ Triple DES coding details
 - No further detail is required

⇒ FEAL  coding details
 - No further detail is required

 Data Confidentiality Mode Details (Octet x.12 etc)

 These octets indicate coding details for each data confidentiality mode of
operation. These details are found below:

⇒ CBC mode coding details
 A 64-bit (8-byte) binary encoded value. This is the initialization vector (IV) for the
CBC mode.

⇒ Counter mode coding details
 - No further detail is required

⇒ ECB mode coding details
- No further detail is required.
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6.2.3.2. Data Integrity Algorithm

This octet group indicates an algorithm for the data integrity service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 0 0 1 0

Data Integrity Algorithm Identifier x.1

Length of Data Integrity Algorithm Contents x.2
User Replay Algorithm

Data Integrity Algorithm x.3

OUI x.4 (Note)

OUI (continued) x.5 (Note)

OUI (continued) x.6 (Note)

Data Integrity Algorithm Details x.7 etc.

Length of Data Integrity Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the data integrity algorithm
fields, contained in octets x.3, x.4, etc.

User Defined Indicator (Octet x.3 Bit 8)

8 Meaning
0 ATM Forum Defined Algorithm
1 User Defined Algorithm

When User Defined Algorithms are indicated, the Bit 7 is no longer an indicator of
Replay/Reordering Protection.

Replay/Reordering Protection Indicator (Octet x.3 Bit 7)

7 Meaning
0 No replay/reordering protection provided.
1 Replay/reordering protection provided.

Data Integrity Algorithm (Octet x.3 Bits 6 - 1)

6   5   4   3   2   1 Meaning
0   0   0   0   0   1 HMAC-MD5
0   0   0   0   1   0 HMAC-SHA-1
0   0   0   0   1   1 HMAC-RIPEMD-160
0   0   0   1   0   0 MAC generated using DES in CBC mode
0   0   0   1   0   1 MAC generated using DES-40 in CBC mode
0   0   0   1   1   0 MAC generated using Triple-DES in CBC mode
0   0   0   1   1   1 MAC generated using FEAL in CBC mode

OUI (Octets x.4 - x.6)

Note: if the data integrity algorithm is “user defined,” then the IEEE OUI of the
vendor/user that assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Data Integrity Algorithm Details (Octet x.7 etc.)
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These octets indicate coding details for each data integrity algorithm. These
details are found below:

⇒ HMAC-MD5 coding details
 - No further detail is required.

⇒ HMAC-SHA-1 coding details
 - No further detail is required.

⇒ HMAC-RIPEMD-160 coding details
 - No further detail is required.

⇒ DES in CBC mode MAC details
 - No further detail is required.

⇒ DES-40 in CBC mode MAC details
 - No further detail is required.

⇒ Triple DES in CBC mode MAC details
 - No further detail is required.

⇒ FEAL in CBC mode MAC details
- No further detail is required.

6.2.3.3. Hash Algorithm

This octet group indicates a hashing algorithm for the authentication service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 0 1 0 0

Hash Algorithm Identifier x.1

Length of Hash Algorithm Contents x.2

Hash Algorithm x.3
OUI x.4 (Note)

OUI (continued) x.5 (Note)
OUI (continued) x.6 (Note)

Hash Algorithm Details x.7 etc*

Length of Hash Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the hash algorithm fields,
contained in octets x.3, x.4, etc.

Hash Algorithm (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 MD5
0   0   0   0   0   0   1   0 SHA-1
0   0   0   0   0   0   1   1 RIPEMD-160
1   x   x   x   x   x   x   x User-defined hash algorithm

(the value of bits 1-7 is user-defined)
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OUI (Octets x.4 - x.6)

Note: if the hash algorithm is “user defined,” then the IEEE OUI of the vendor/user that
assigned the user-defined codepoint shall be included in these octets. Otherwise, these
octets are not included.

Hash Algorithm Details (Octet x.7 etc.)

These octets indicate coding details for each hash algorithm. These details are
found below:

⇒ MD5 coding details
 - No further detail is required.

⇒ SHA-1 coding details
 - No further detail is required.

⇒ RIPEMD-160 coding details
- No further detail is required.

6.2.3.4. Signature Algorithm

This octet group indicates a signature algorithm for the Authentication Service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 0 1 1 0

Signature Algorithm Identifier x.1

Length of Signature Algorithm Contents x.2

Signature Algorithm x.3

OUI x.4 (Note)

OUI (continued) x.5 (Note)

OUI (continued) x.6 (Note)

Signature Algorithm Details x.7 etc*.

Length of Signature Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the signature algorithm fields,
contained in octets x.3, x.4, etc.

Signature Algorithm (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 RSA
0   0   0   0   0   0   1   0 DSA
0   0   0   0   0   0   1   1 Elliptic Curve/DSA like
0   0   0   0   0   1   0   0 ESIGN
0   0   0   0   0   1   0   1 DES/CBC
0   0   0   0   0   1   1   0 DES40/CBC
0   0   0   0   0   1   1   1 Triple DES/CBC
0   0   0   0   1   0   0   0 FEAL/CBC
1   x   x   x   x   x   x   x User-defined algorithm

(the value of bits 1-7 is user-defined)
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OUI (Octets x.4 - x.6)

Note: if the signature algorithm is “user defined,” then the IEEE OUI of the vendor/user
that assigned the user-defined codepoint shall be included in these octets. Otherwise,
these octets are not included.

Signature Algorithm Details (Octet x.7 etc.)

These optional octets indicate coding details for each signature algorithm. These
details are found below:

⇒ RSA coding details
 - No further detail is required.

⇒ DSA coding details
 - No further detail is required.

⇒ Elliptic Curve/DSA coding details
 - No further detail is required (cf. Section 6.9)

⇒ ESIGN coding details

 The order of k:
This octet contains the binary encoding of the order of k (i.e., X, in the relation
 k = 2X  )

⇒ DES/CBC coding details
 - No further detail required.

⇒ DES40/CBC coding details
 - No further detail required.

⇒ Triple DES/CBC coding details
 - No further detail required.

⇒ FEAL/CBC coding details
- No further detail required.

6.2.3.5. Key Exchange Algorithm

This octet group indicates an algorithm for key exchange. This algorithm is used to encrypt the contents part
of the “Security confidential parameters” information element.
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Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 1 0 0 0

Key Exchange Algorithm Identifier x.1
Length of Key Exchange Algorithm Contents x.2

Key Exchange Algorithm x.3
OUI x.4 (Note)

OUI (continued) x.5 (Note)
OUI (continued) x.6 (Note)

Key Exchange Algorithm Details x.7 etc.*

Length of Key Exchange Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the key exchange algorithm
fields, contained in octets x.3, x.4, etc.

Key Exchange Algorithm (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 RSA
0   0   0   0   0   0   1   0 Diffie-Hellman
0   0   0   0   0   0   1   1 ECKAS-DH (prime field)
0   0   0   0   0   1   0   0 ECKAS-DH (characteristic 2 field)
0   0   0   0   0   1   0   1 DES/CBC
0   0   0   0   0   1   1   0 DES40/CBC
0   0   0   0   0   1   1   1 Triple DES/CBC
0   0   0   0   1   0   0   0 FEAL/CBC
1   x   x   x   x   x   x   x User-defined key exchange algorithm

(the value of bits 1-7 is user-defined)

OUI (Octets x.4 - x.6)

Note: if the key exchange algorithm is “user defined,” then the IEEE OUI of the
vendor/user that assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Key Exchange Algorithm Details (Octet x.7 etc.)

These octets indicate coding details for each key exchange algorithm. These
details are found below:

⇒ RSA coding details
 - No further detail is required.

⇒ Diffie-Hellman coding details
 Diffie-Hellman public key identifier (Octet x.7a):

 This octet is the identifier for the Diffie-Hellman public key.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   0   1 Diffie-Hellman public key

 Diffie-Hellman public key length (Octet x.7b):
 This octet specifies the length of the Diffie-Hellman public key in
octets.
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 Diffie-Hellman public key value (Octet x.7c etc.):
 This field contains octet string representation of the Diffie-Hellman
public key value. This field contains the initiator’s Diffie-Hellman
public key value (X) when this information element is sent in FLOW1-
3WE. This field contains the responder’s Diffie-Hellman public key
value (Y) when this information element is sent in FLOW2-3WE.

 Diffie-Hellman modulus identifier (Octet x.8a):
 This octet is the identifier for the Diffie-Hellman public modulus.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   0 Diffie-Hellman public modulus

 Diffie-Hellman modulus length (Octet x.8b):
 This octet specifies the length of the Diffie-Hellman public modulus in
octets.

 Diffie-Hellman modulus value (Octet x.8c etc.):
 This field contains octet string representation of the Diffie-Hellman
public modulus value (P).

 Diffie-Hellman base identifier (Octet x.9a):
 This octet is the identifier for the Diffie-Hellman public base.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   1 Diffie-Hellman public base

 Diffie-Hellman base length (Octet x.9b):
 This octet specifies the length of the Diffie-Hellman public base in
octets.

 Diffie-Hellman base value (Octet x.9c etc.):
 This field contains octet string representation of the Diffie-Hellman
public base value (G).

⇒ Elliptic Curve Key Agreement Scheme-Diffie Hellman Analogue (ECKAS-DH)
coding details for prime fields (cf. Section 6.9.5):

 ECKAS-DHp public key identifier (Octet x.7a):
 This octet is the identifier for the compressed ECKAS-DHp public key.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   0   1 ECKAS-DHp public key

 ECKAS-DHp public key length (Octet x.7b):
 This octet specifies the length of the compressed ECKAS-DHp public
key in octets.

 ECKAS-DHp public key value (Octet x.7c etc.):
 This field contains octet string representation of the compressed
ECKAS-DHp public key value. This field contains the initiator’s
compressed ECKAS-DHp public key value (aP) when this information
element is sent in FLOW1-3WE. This field contains the responder’s
compressed ECKAS-DHp public key value (bP) when this information
element is sent in FLOW2-3WE.

 ECKAS-DHp modulus identifier (Octet x.8a):
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 This octet is the identifier for the ECKAS-DHp public modulus (p).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   0 ECKAS-DHp public modulus

 ECKAS-DHp modulus length (Octet x.8b):
 This octet specifies the length of the ECKAS-DHp public modulus in
octets.

 ECKAS-DHp modulus value (Octet x.8c etc.):
 This field contains octet string representation of the ECKAS-DHp
public modulus value (p).

 ECKAS-DHp base identifier (Octet x.9a):
 This octet is the identifier for the compressed ECKAS-DHp public base
(P) (cf. Section 6.9).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   1 ECKAS-DHp public base

 ECKAS-DHp base length (Octet x.9b):
 This octet specifies the length of the compressed ECKAS-DHp public
base in octets.

 ECKAS-DHp base value (Octet x.9c etc.):
 This field contains octet string representation of the compressed
ECKAS-DHp public base.

 ECKAS-DHp Weierstrass coefficient identifier (Octet x.10a):
 This octet is the identifier for the ECKAS-DHp Weierstrass coefficient
(a) (cf. Section 6.9).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   1   0   0 ECKAS-DHp Weierstrass 

coefficient

 ECKAS-DHp Weierstrass coefficient length (Octet x.10b):
 This octet specifies the length of the ECKAS-DHp Weierstrass
coefficient (a) in octets.

 ECKAS-DHp Weierstrass coefficient value (Octet x.10c etc.):
 This field contains octet string representation of the ECKAS-DHp
Weierstrass coefficient (a).

 ECKAS-DHp Weierstrass coefficient identifier (Octet x.11a):
 This octet is the identifier for the ECKAS-DHp Weierstrass coefficient
(b) (cf. Section 6.9).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   1   0   1 ECKAS-DHp Weierstrass 

coefficient

 ECKAS-DHp Weierstrass coefficient length (Octet x.11b):
 This octet specifies the length of the ECKAS-DHp Weierstrass
coefficient (b) in octets.

 ECKAS-DHp Weierstrass coefficient value (Octet x.11c etc.):
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 This field contains octet string representation of the ECKAS-DHp
Weierstrass coefficient (b).

⇒ Elliptic Curve Key Agreement Scheme-Diffie Hellman Analogue (ECKAS-DH)
coding details for characteristic 2 (cf. Section 6.9.5):

 ECKAS-DH2 public key identifier (Octet x.7a):
 This octet is the identifier for the compressed ECKAS-DH2 public key.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   0   1 ECKAS-DH2 public key

 ECKAS-DH2 public key length (Octet x.7b):
 This octet specifies the length of the compressed ECKAS-DH2 public
key in octets.

 ECKAS-DH2 public key value (Octet x.7c etc.):
 This field contains octet string representation of the compressed
ECKAS-DH2 public key value. This field contains the initiator’s
compressed ECKAS-DH2 public key value (aP) when this information
element is sent in FLOW1-3WE. This field contains the responder’s
compressed ECKAS-DH2 public key value (bP) when this information
element is sent in FLOW2-3WE.

 ECKAS-DH2 field size identifier (Octet x.8a):
 This octet is the identifier for the ECKAS-DH2 field size (m).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   0 ECKAS-DH2 field size

 ECKAS-DH2 field size length (Octet x.8b):
 This octet specifies the length of the ECKAS-DH2 field size (m) in
octets.

 ECKAS-DH2 field size value (Octet x.8c etc.):
 This field contains octet string representation of the ECKAS-DH2 field
size value (m).

 ECKAS-DH2 base identifier (Octet x.9a):
 This octet is the identifier for the compressed ECKAS-DH2 public base
(P) (cf. Section 6.9).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   1 ECKAS-DH2 public base

 ECKAS-DH2 base length (Octet x.9b):
 This octet specifies the length of the compressed ECKAS-DH2 public
base in octets.

 ECKAS-DH2 base value (Octet x.9c etc.):
 This field contains octet string representation of the compressed
ECKAS-DH2 public base.

 ECKAS-DH2 Weierstrass coefficient (a) identifier (Octet x.10a):
 This octet is the identifier for the ECKAS-DH2 Weierstrass coefficient
(a) (cf. Section 6.9).
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 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   1   0   0 ECKAS-DH2 Weierstrass 

coefficient (a)

 ECKAS-DH2 Weierstrass coefficient (a) length (Octet x.10b):
 This octet specifies the length of the ECKAS-DH2 Weierstrass
coefficient (a) in octets.

 ECKAS-DH2 Weierstrass coefficient (a) value (Octet x.10c etc.):
 This field contains octet string representation of the ECKAS-DH2
Weierstrass coefficient (a).

 ECKAS-DH2 Weierstrass coefficient (b) identifier (Octet x.11a):
 This octet is the identifier for the ECKAS-DH2 Weierstrass coefficient
(b) (cf. Section 6.9).

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   1   0   1 ECKAS-DH2 Weierstrass 

coefficient (b)

 ECKAS-DH2 Weierstrass coefficient (b) length (Octet x.11b):
 This octet specifies the length of the ECKAS-DH2 Weierstrass
coefficient (b) in octets.

 ECKAS-DH2 Weierstrass coefficient (b) value (Octet x.11c etc.):
 This field contains octet string representation of the ECKAS-DH2
Weierstrass coefficient (b).

⇒ DES/CBC coding details

 - No further detail required.

⇒ DES40/CBC coding details

 - No further detail required.

⇒ Triple DES/CBC coding details

 - No further detail required.

⇒ FEAL/CBC coding details

- No further detail required.
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6.2.3.6. Session Key Update Algorithm

This octet group indicates a session key update algorithm for updating the data confidentiality and data
integrity session keys.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 1 0 1 0

Session Key Update Algorithm Identifier x.1

Length of Session Key Update Algorithm Contents x.2

Session Key Update Algorithm x.3

OUI x.4 (Note)

OUI (continued) x.5 (Note)

OUI (continued) x.6 (Note)

Session Key Update Algorithm Details x.7 etc.

Length of Session Key Update Algorithm Contents (Octet x.2)

A binary number indicating the length in octets of the key exchange algorithm
fields, contained in octets x.3, x.4, etc.

Session Key Update Algorithm (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 SKE with MD5
0   0   0   0   0   0   1   0 SKE with SHA-1
0   0   0   0   0   0   1   1 SKE with RIPEMD-160
1   x   x   x   x   x   x   x User-defined key exchange algorithm

(the value of bits 1-7 is user-defined)

OUI (Octets x.4 - x.6)

Note: if the session key update algorithm is “user defined,” then the IEEE OUI of the
vendor/user that assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Session Key Update Algorithm Details (Octet x.7 etc.)

These octets indicate coding details for each session key update algorithm. These
details are found below:

⇒ SKE with MD5 coding details
 - No further detail is required.

⇒ SKE with SHA-1 coding details
 - No further detail is required.

⇒ SKE with RIPEMD-160 coding details
- No further detail is required.
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6.2.3.7. Authentication Algorithm Profile Group

This octet group indicates a set of algorithms supporting authentication service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 1 1 0 0

Authentication Algorithm Group Identifier x.1

Length of Authentication Algorithm Group Contents x.2

Authentication Algorithm Group x.3
OUI x.4

OUI (continued) x.5

OUI (continued) x.6

1 0 1 1 0 0 1 0

Signature Algorithm Details Identifier x.7

Length of  Signature Algorithm Details x.8

Signature Algorithm Details x.9 etc.

1 0 1 1 0 1 0 0

Hash Algorithm Details Identifier x.10 etc.

Length of Hash Algorithm Details x.11 etc.

Hash Algorithm Details x.12 etc.

Length of Authentication Algorithm Group Contents (Octet x.2)

A binary number indicating the length in octets of the authentication algorithm group
fields contained in x.3, x.4, etc.

Authentication Algorithm Group  (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 AUTH-1

Signature=DES/CBC
Hash=Not Applicable

0   0   0   0   0   0   1   0 AUTH-2
Signature=DSA
Hash=SHA-1

0   0   0   0   0   0   1   1 AUTH-3
Signature=EC/DSA
Hash=SHA-1

0   0   0   0   0   1   0   0 AUTH-4
Signature=ESIGN
Hash=MD5

0   0   0   0   0   1   0   1 AUTH-5
Signature=FEAL/CBC
Hash=Not Applicable

0  0   0   0   0   1   1    0 AUTH-6
Signature=RSA
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Hash=MD5

1   x   x   x   x   x   x   x User-defined Authentication Algorithm Group
(the value of bits 1-7 is user defined)

OUI (Octets x.4-x.6)

Note: If the authentication algorithm group is “user defined,” then the IEEE OUI of the
vendor/user that assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Signature Algorithm Details (Octet x.7 etc.)

These optional octets include a binary number indicating the length of the signature
algorithm details and the coding details for each signature algorithm. A list of signature
algorithm details is provided in the description of the signature algorithm primitive
(Section 6.2.3.4).

Hash Algorithm Details (Octet x.10 etc.)

These optional octets include a binary number indicating the length of the hash algorithm
details and the coding details for each hash algorithm. A list of hash algorithm details is
provided in the description of the hash algorithm primitive (Section 6.2.3.3).

6.2.3.8. Integrity Algorithm Profile Group

This octet group indicates a set of algorithms supporting integrity service.
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Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 0 1 1 1 0

Integrity Algorithm Group Identifier x.1

Length of Integrity Algorithm Group Contents x.2

Integrity Algorithm Group x.3
OUI x.4

OUI (continued) x.5

OUI (continued) x.6

1 0 1 1 0 1 1 0
MAC Algorithm Details Identifier x.7
Length of MAC Algorithm Details x.8

MAC Algorithm Details x.9 etc.
1 0 1 1 0 0 1 0

Signature Algorithm Details Identifier x.10 etc.

Length of  Signature Algorithm Details x.11 etc.

Signature Algorithm Details x.12 etc.

1 0 1 1 1 0 0 0
Key Exchange Algorithm Details Identifier x.13 etc.
Length of Key Exchange Algorithm Details x.14 etc.

Key Exchange Algorithm Details x.15 etc.
1 0 1 1 1 0 1 0

Key Update Algorithm Details Identifier x.16 etc.
Length of Key Update Algorithm Details x.17 etc.

Key Update Algorithm Details x.18 etc.
1 0 1 1 0 1 0 0

Hash Algorithm Details Identifier x.19 etc.

Length of Hash Algorithm Details x.20 etc.

Hash Algorithm Details x.21 etc.

Length of Integrity Algorithm Group Contents (Octet x.2)

A binary number indicating the length in octets of the integrity algorithm group fields
contained in x.3, x.4, etc.

Integrity Algorithm Group  (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 INTEG-1

MAC=DES/CBC
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5

0   0   0   0   0   0   1   0 INTEG-2
MAC=DES/CBC
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1
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0   0   0   0   0   0   1   1 INTEG-3
MAC=DES/CBC
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   0   1   0   0 INTEG-4
MAC=DES/CBC
Signature=DES/CBC
Key Exchange=DES/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   0   0   1   0   1 INTEG-5
MAC=HMD5
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5

0  0   0   0   0   1   1    0 INTEG-6
MAC=HMD5
Signature=DES/CBC
Key Exchange=DES/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   0   0   1   1   1 INTEG-7
MAC=HSHA-1
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   0   0   0 INTEG-8
MAC=HSHA-1
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   0   0   1 INTEG-9
MAC=HSHA-1
Signature=DES/CBC
Key Exchange=DES/CBC
Key Update=SHA-1
Hash=Not Applicable
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0   0   0   0   1   0   1   0 INTEG-10
MAC=FEAL/CBC
Signature=ESIGN
Key Exchange=DH
Key Update=MD5
Hash=MD5

0   0   0   0   1   0   1   1 INTEG-11
MAC=FEAL/CBC
Signature=FEAL/CBC
Key Exchange=FEAL/CBC
Key Update=MD5
Hash=Not Applicable

1   x   x   x   x   x   x   x User-defined Authentication Algorithm Group
(the value of bits 1-7 is user defined)

OUI (Octets x.4-x.6)

Note: If the integrity algorithm group is “user defined,” then the IEEE OUI of the
vendor/user which assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

MAC Algorithm Details (Octet x.7 etc.)

These optional octets include a binary number indicating the length of the MAC algorithm
details and the coding details for each MAC algorithm. A list of MAC algorithm details is
provided in  (Section 6.2.3.2).

Signature Algorithm Details (Octet x.10 etc.)

These optional octets include a binary number indicating the length of the signature
algorithm details and the coding details for each signature algorithm. A list of signature
algorithm details is provided in the description of the signature algorithm primitive
(Section 6.2.3.4).

Key Exchange Algorithm Details (Octet x.13 etc.)

These optional octets include a binary number indicating the length of the key exchange
algorithm details and the coding details for each key exchange algorithm. A list of key
exchange algorithm details is provided in the description of the key exchange algorithm
primitive (Section 6.2.3.5).

Key Update Algorithm Details (Octet x.16 etc.)

These optional octets include a binary number indicating the length of the key update
algorithm details and the coding details for each key update algorithm. A list of key
update algorithm details is provided in the description of the key update algorithm
primitive (Section 6.2.3.6).

Hash Algorithm Details (Octet x.19 etc.)

These optional octets include a binary number indicating the length of the hash algorithm
details and the coding details for each hash algorithm. A list of hash algorithm details is
provided in the description of the hash algorithm primitive (Section 6.2.3.3).
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6.2.3.9. Confidentiality Algorithm Profile Group

This octet group indicates a set of algorithms supporting confidentiality service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 0 1 1 0 0 0 0

Confidentiality Algorithm Group Identifier x.1

Length of Confidentiality Algorithm Group Contents x.2

Confidentiality Algorithm Group x.3
OUI x.4

OUI (continued) x.5

OUI (continued) x.6

1 0 1 1 1 1 1 0
Encryption Algorithm Details Identifier x.7
Length of Encryption Algorithm Details x.8

Encryption Algorithm Details x.9 etc.
1 0 1 1 0 0 1 0

Signature Algorithm Details Identifier x.10 etc.

Length of  Signature Algorithm Details x.11 etc.

Signature Algorithm Details x.12 etc.

1 0 1 1 1 0 0 0
Key Exchange Algorithm Details Identifier x.13 etc.
Length of Key Exchange Algorithm Details x.14 etc.

Key Exchange Algorithm Details x.15 etc.
1 0 1 1 1 0 1 0

Key Update Algorithm Details Identifier x.16 etc.
Length of Key Update Algorithm Details x.17 etc.

Key Update Algorithm Details x.18 etc.
1 0 1 1 0 0 1 0

Hash Algorithm Details Identifier x.19 etc.

Length of Hash Algorithm Details x.20 etc.

Hash Algorithm Details x.21 etc.

Length of Confidentiality Algorithm Group Contents (Octet x.2)

A binary number indicating the length in octets of the integrity algorithm group fields
contained in x.3, x.4, etc.

Confidentiality Algorithm Group  (Octet x.3)

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 CONF-1

Encryption=DES/CBC
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5
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0   0   0   0   0   0   1   0 CONF-2
Encryption=DES/CBC
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   0   0   1   1 CONF-3
Encryption=DES/CBC
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   0   1   0   0 CONF-4
Encryption=DES/CBC
Signature=DES/CBC
Key Exchange=DES/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   0   0   1   0   1 CONF-5
Encryption=DES/Counter
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5

0  0   0   0   0   1   1    0 CONF-6
Encryption=DES/Counter
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   0   1   1   1 CONF-7
Encryption=DES/Counter
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   0   0   0 CONF-8
Encryption=DES/Counter
Signature=DES /CBC
Key Exchange=DES /CBC
Key Update=MD5
Hash=Not Applicable
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0   0   0   0   1   0   0   1 CONF-9
Encryption=Triple-DES/CBC
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5

0   0   0   0   1   0   1   0 CONF-10
Encryption=Triple-DES/CBC
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   0   1   1 CONF-11
Encryption=Triple-DES/CBC
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   1   0   0 CONF-12
Encryption=Triple-DES/CBC
Signature= Triple-DES/CBC
Key Exchange= Triple-DES/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   0   1   1  0   1 CONF-13
Encryption=Triple-DES/Counter
Signature=RSA
Key Exchange=RSA
Key Update=MD5
Hash=MD5

0   0   0   0   1   1   1   0 CONF-14
Encryption=Triple-DES/Counter
Signature=DSA
Key Exchange=DH
Key Update=SHA-1
Hash=SHA-1

0   0   0   0   1   1   1   1 CONF-15
Encryption=Triple-DES/Counter
Signature=EC/DSA
Key Exchange=EC/DH
Key Update=SHA-1
Hash=SHA-1
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0   0   0   1   0   0   0   0 CONF-16
Encryption=Triple-DES/Counter
Signature= Triple-DES/CBC
Key Exchange= Triple-DES/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   1   0   0   0   1 CONF-17
Encryption=FEAL/CBC
Signature=ESIGN
Key Exchange=DH
Key Update=MD5
Hash=MD5

0   0   0   1   0   0   1   0 CONF-18
Ecryption=FEAL/CBC
Signature=FEAL/CBC
Key Exchange=FEAL/CBC
Key Update=MD5
Hash=Not Applicable

0   0   0   1   0   0   1   1 CONF-19
Encryption=FEAL/Counter
Signature=ESIGN
Key Exchange=DH
Key Update=MD5
Hash=MD5

0   0   0   1   0   1   0   0 CONF-20
Encryption=FEAL/Counter
Signature=FEAL/CBC
Key Exchange=FEAL/CBC
Key Update=MD5
Hash=Not Applicable

1   x   x   x   x   x   x   x User-defined Authentication Algorithm Group
(the value of bits 1-7 is user defined)

OUI (Octets x.4-x.6)

Note: If the confidentiality algorithm group is “user defined,” then the IEEE OUI of the
vendor/user which assigned the user-defined codepoint shall be included in these octets.
Otherwise, these octets are not included.

Encryption Algorithm Details (Octet x.7 etc.)

These optional octets include a binary number indicating the length of the encryption
algorithm details and the coding details for each encryption algorithm. A list of
encryption algorithm details is provided in data confidentiality algorithm primitive
(Section 6.2.3.1).

Signature Algorithm Details (Octet x.10 etc.)

These optional octets include a binary number indicating the length of the signature
algorithm details and the coding details for each signature algorithm. A list of signature
algorithm details is provided in the description of the signature algorithm primitive
(Section 6.2.3.4).
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Key Exchange Algorithm Details (Octet x.13 etc.)

These optional octets include a binary number indicating the length of the key exchange
algorithm details and the coding details for each key exchange algorithm. A list of key
exchange algorithm details is provided in the description of the key exchange algorithm
primitive (Section 6.2.3.5).

Key Update Algorithm Details (Octet x.16 etc.)

These optional octets include a binary number indicating the length of the key update
algorithm details and the coding details for each key update algorithm. A list of key
update algorithm details is provided in the description of the key update algorithm
primitive (Section 6.2.3.6).

Hash Algorithm Details (Octet x.19 etc.)

These optional octets include a binary number indicating the length of the hash algorithm
details and the coding details for each hash algorithm. A list of hash algorithm details is
provided in the description of the hash algorithm primitive (Section 6.2.3.3).

6.2.4. Confidential Section

The security confidentiality section provides for the exchange of confidential information in the SME.  This
optional section provides an opportunity to include encrypted data in an SAS.

Bits
8 7 6 5 4 3 2 1 Octets
1 1 0 0 0 0 0 0

Confidential Section Identifier x.1
Length of Confidential Section x.2

Length of Confidential Section (cont.) x.3
Confidential Data x.4 etc

Length of Confidential Section (Octet x.2, x.3)

This 16-bit octet group provides the length of the Confidential Section.  This is the length
of the ciphertext, which may not be the same as the plaintext.

Confidential Data (Octet x.4 etc)

This Octet group contains encrypted data that requires decryption in order to
be meaningful to the security agent.  In the SME, this is the encryption of
the Confidential Parameters primitive (defined below), using the key
exchange algorithm referenced by the SAS identifier.

6.2.4.1. Confidential Parameters

The Security Message Exchange Protocol supports the exchange of confidentiality parameters.  These SAS
primitives can be consolidated in a single Confidential Parameters section, or can be included individually.
This is the original confidential parameters section.
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Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 0 0 1 0 0

Confidential Parameters Identifier x.1
Master Key x.2 etc

First Data Confidentiality Session Key x.3 etc
First Data Integrity Session Key x.4 etc

Master Key (Octet x.2 etc. Optional)

This octet group provides the Master Key for the cryptographic services.
Further details can be found in Section 5.2.3.

First Data Confidentiality Session Key (Octet x.3 etc. Optional)

This field contains the initial Data Confidentiality Session Key.  Further details
can be found in Section 5.2.4.

First Data Integrity Session Key (Octet x.4 etc. Optional)

This field contains the initial Data Integrity Session Key.  Further details can be
found in Section 5.2.4.

6.2.4.2. Master Key

This octet group contains the key used to encrypt subsequent session key.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 0 1 0 0 0

Master Key Identifier x.1
Length of Master Key x.2

Master Key Value x.3 etc.

Master Key Length (Octet x.2)

A binary number indicating the length in octets of the Master Key value
contained in octets x.3, etc.

Master Key Value (Octet x.3 etc.)

This field contains the binary encoding of the Master Key value, with bit 8 of the
first octet being the most significant bit, and bit 1 of the last octet being the least
significant bit. The Master Key length must be an integer multiple of 8 bits.

6.2.4.3. First Data Confidentiality Session Key

This octet group contains the first session key to be used to provide the data confidentiality service.
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Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 0 1 0 1 0

First Data Confidentiality Session Key Identifier x.1
Length of First Data Confidentiality Session Key x.2

First Data Confidentiality Session Key Value x.3 etc.

First Data Confidentiality Session Key Length (Octet x.2)

A binary number indicating the length in octets of the First Data Confidentiality
Session Key Value contained in octets x.3, etc.

First Data Confidentiality Session Key Value (Octet x.3 etc.)

This field contains the binary encoding of The First Data Confidentiality Session
Key Value, with bit 8 of the first octet being the most significant bit, and bit 1 of
the last octet being the least significant bit.  The First Data Confidentiality
Session Key length must be an integer multiple of 8 bits. Algorithm-specific
details for this field are as follows:

⇒ When the data confidentiality algorithm is DES with 56-bit effective key,
the 64-bit (8-byte) key value (which includes parity) is encoded in binary in
this field.

⇒ When the data confidentiality algorithm is Triple-DES with 112-bit effective
key, the 128-bit (16-byte) key value (which includes parity) is encoded in
binary in this field as follows: The “first key” is encoded in binary in octets
21.2 through 21.9 and the “second key” is encoded in binary in octets 21.10
through 21.17 of this field.

⇒ When the data confidentiality algorithm is FEAL with 64-bit effective key,
the 64-bit (8-byte) key is encoded in binary in this field.

6.2.4.4. First Data Integrity Session Key

This octet group contains the first session key to be used to provide the data integrity service.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 0 1 1 0 0

First Data Integrity Session Key Identifier x.1

Length of First Data Integrity Session Key x.2

First Data Integrity Session Key Value x.3 etc.

First Data Integrity Session Key Length (Octet x.2)

A binary number indicating the length in octets of the First Data Integrity
Session Key value contained in octets x.3, etc.

First Data Integrity Session Key Value (Octet x.3 etc.)
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This field contains the binary encoding of the First Data Integrity Session Key
value, with bit 8 of the first octet being the most significant bit, and bit 1 of the
last octet being the least significant bit. The First Data Integrity Session Key
length must be an integer multiple of 8 bits.

6.2.5. Authentication Section

This octet group specifies the SAS Authentication Section.  This section is intended to support
authentication as specified in the Security Message Exchange Protocol.  However, the design provides a
generic authentication service that can be applied to any part of the SSIE.  All fields of this section are
optional.

The specified digital signature type determines the digital signature’s scope.  When used in the Security
Message Exchange Protocol, the digital signature must be a Security Message Exchange Digital Signature.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 0 0 0 0

Authentication Section Identifier x.1

Initiator Random Number x.2 etc

Responder Random Number x.3 etc

Time Variant Time Stamp x.4 etc

Credentials x.5 etc

Digital Signature x.6 etc

Initiator Random Number (Octet x.2 etc Optional)

This section provides the initiator supplied nonce, if provided in the exchange.  Further
details on the format and use of this field are found below.

Responder Random Number (Octet x.3 etc Optional)

This section provides the responder supplied nonce, if provided in the exchange.  Further
details on the format and use of this field are found below.

Time Variant Time Stamp (Octet x.4 etc Optional)

This section specifies a unique time stamp/sequence number that will provide replay
protection.  Further details on the format and use of this field are found below.

Credentials (Octet x.5 etc Optional.)

This section is employed when credential presentation or exchange is required in the
Security Message Exchange. Further details on using this field are found below.

Digital Signature (Octet x.6 etc)

This section is the Digital Signature. Further details on using this field are found below.
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6.2.5.1. Initiator Random Number (Nonce)

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 0 1 0 0

Initiator Random Number Identifier x.1

Initiator Random Number Value x.2

Initiator Random Number Value (cont.) x.3

Initiator Random Number Value (cont.) x.4

Initiator Random Number Value (cont.) x.5

Initiator Random Number Identifier (Octet x.2-5)

This field is a 32 bit binary random number.

6.2.5.2. Responder Random Number (Nonce)

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 0 1 0 1

Responder Random Number Identifier x.1

Responder Random Number Value x.2

Responder Random Number Value (cont.) x.3

Responder Random Number Value (cont.) x.4

Responder Random Number Value (cont.) x.5

Responder Random Number Identifier (Octet x.2-5)

This field is a 32 bit binary random number.
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6.2.5.3. Time-Variant Time Stamp

This field provides a label that can be used as a unique identifier for a given security IE, such as an IE used
in an authentication exchange. This field consists of two 32 bit (four octet) integers, one for the time stamp
(with one second resolution), and the other for a monotonically increasing sequence number. The timestamp
shall be encoded in Octets x.2 - x.5, and the sequence number shall be encoded in Octets x.6 - x.9. Each of
these integers are encoded as 32 bit unsigned binary integers, with bit 8 of the first octet being the most
significant bit, and bit 1 of the fourth octet being the least significant bit. For further details on using this
field, consult Sections 5.1 and 5.1.1.2.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 0 1 1 0

Time-Variant Time Stamp Identifier x.1

Time Stamp Value x.2

Time Stamp Value (cont.) x.3

Time Stamp Value (cont.) x.4

Time Stamp Value (cont.) x.5

Sequence Number x.6

Sequence Number (cont.) x.7

Sequence Number (cont.) x.8

Sequence Number (cont.) x.9

Time Stamp Value (Octet x.2-5)

The time stamp value is a 4-byte coordinated universal time, the Greenwich Mean Time
(GMT) at which the signature was generated. This value is the binary encoding of the
number of seconds since 00:00:00 GMT on January 1, 1970 (same as UNIX time). This is
encoded in binary in octets x.2 through x.5.

Sequence Number (Octet x.6-9)

The sequence number is a 4-octet binary number that is incremented with each
authentication flow that is sent to the same destination with the same time stamp value.
When the time stamp value changes, the sequence number is reset to 0. The sequence
number value is encoded in binary in octets x.6 through x.9.
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6.2.5.4. Credentials

Certificate exchange is an optional feature of the Security Message Exchange Protocol, and is in general, a
credential presentation feature.  User defined credential types may contain a complete set of security
services, and as such, additional authentication sections, such as time stamps, random numbers, and
signatures, may not be required in the authentication process.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 1 0 0 0

Credential Identifier x.1
Length of Credential Contents x.2

Length of Credential Contents (cont.) x.3
Credential Type x.4
Credential Value x.5 etc.

Length of Credential Contents (Octets x.2 - 3):

The overall length of the SSIE limits maximum length of the credential, when signaling
channel is used for certificate exchange

Credential Type (Octet x.3):

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 X.509 Certificate V1
0   0   0   0   0   0   1   0 X.509 Certificate V2
0   0   0   0   0   0   1   1 X.509 Certificate V3
1   x   x   x   x   x   x   x User defined credential type.

(the value of bits 1-7 is user-defined)

Credential Value (Octet x.4 etc.):

This field contains the binary encoding of the credentials value, the format of
which conforms to the type specified in Octet x.3.

6.2.5.5. Security Message Exchange Digital Signature

This octet group contains the signature value computed over the objects required by the Security Exchange
Message Protocol.  The signature algorithm is specified in other sections of the SSIE SAS.  The length is
the length of the entire octet group, excluding the identifier and the length octets.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 1 0 1 0

Security Message Exchange Digital Signature Identifier x.1

Security Message Exchange Digital Signature Length x.2

Digital Signature Value x.3 etc.
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Security Message Exchange Digital Signature Length (Octet x.2)

A binary number indicating the length in octets of the digital signature value
contained in octets x.3 etc.

Security Message Exchange Digital Signature Value (Octet x.3 etc.)

This field contains the binary encoding of the signature value.  This is signature
algorithm specific and both security agents in the SME must know the signature
algorithm used.  Further details on constructing the digital signature buffer and
calculating this field are found in the following sections of this document.

Algorithm-specific details for the signature are described below:

⇒ When the signature algorithm is RSA, this field contains the octet string
representation of the digital signature.

⇒ When the signature algorithm is DSA, the two digital signature components R and S
are encoded as octet strings in this field as follows:

 DSA “R” parameter identifier (Octet x.3a):
 This octet is the identifier for the R component of the DSA digital signature.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   0   1 R Parameter

 DSA “R” parameter length (Octet x.3b):
 This octet specifies the length of R in octets.

 DSA “R” parameter value (Octet x.3c etc.):
 This field contains the octet string representation of R.

 DSA “S” parameter identifier (Octet x.4a):
 This octet is the identifier for the S component of the DSA digital signature.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   1   0 S Parameter

 DSA “S” parameter length (Octet x.4b):
 This octet specifies the length of S in octets.

 DSA “S” parameter value (Octet x.4c etc.):
 This field contains the octet string representation of S.

⇒ When the signature algorithm is ESIGN, the digital signature components S are
encoded as octet strings in this field as follows:

 ESIGN “S” parameter identifier (Octet x.3a):
 This octet is the identifier for the ESIGN digital signature S.

 8   7   6   5   4   3   2   1 Meaning
 0   0   0   0   0   0   0   1 S Parameter

 ESIGN “S” parameter length (Octet x.3b):
 This octet specifies the length of  S in octets.
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 ESIGN “S” parameter value (Octet x.3c etc.):
 This field contains the octet string representation of S.

⇒ When the signature algorithm is Elliptic curve Digital Signature Algorithm (ECDSA-
like), the two integers r and s are encoded as octet strings in this field as follows (cf.
Section 6.9.3):

ECSDA-like “ r” parameter identifier  (Octet x.3a):
This octet is the identifier for the r component of the ECDSA-like digital
signature.

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   0   1 r Parameter

ECSDA-like “ r” parameter length  (Octet x.3b):
This octet specifies the length of  r in octets.

ECDSA-like “ r” parameter value (Octet x.3c etc.):
This field contains the octet string representation of r.

ECSDA-like “ s” parameter identifier  (Octet x.4a):
This octet is the identifier for the s component of the ECDSA-like digital
signature.

8   7   6   5   4   3   2   1 Meaning
0   0   0   0   0   0   1   0 s Parameter

ECSDA-like “ s” parameter length  (Octet x.4b):
This octet specifies the length of  s in octets.

ECDSA-like “ s” parameter value (Octet x.4c etc.):
This field contains the octet string representation of s.

6.2.5.5.1.  Digital Signature Buffer–Two-Way Exchange Protocol

The contents and structure of the digital signature buffer for flows 1 and 2 of the Two-Way Security
Message Exchange Protocol are defined below.

6.2.5.5.1.1.  FLOW1-2WE
For FLOW1-2WE, the SME Digital Signature primitive contains the digital signature as defined in Section
5.1.1.2, and reproduced below:

SigKa(Hash(A, B, Ta, Ra, SecOpt, {ConfPara}))

In order to calculate this signature, the hash value is calculated across the buffer shown in Error!
Reference source not found.. Bit ordering within each octet is identical to the bit ordering within the
respective primitives of the Security Services Information Element. In addition, this buffer is padded
according to the appropriate digital signature algorithm procedures.
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Table 17: Digital Signature Buffer for FLOW1-2WE.

Symbol Description of Primitive Octets Refer to Section
A Initiator Distinguished Name X.1 - X.4, etc. 6.2.1.1
B Responder Distinguished

Name
X.1 - X.4, etc 6.2.1.2

Ta Time-Variant Timestamp X.1 - X.9 6.2.5.3
Ra Initiator Random Number X.1 - X.5 6.2.5.1
SecOpt Security Service Specification

Section
X.1,
X.2, etc.,
X.3, etc.

6.2.2

{ConfPara} Confidential Parameters X.1,
X.2, etc.,
X.3, etc.,
X.4, etc

6.2.4.1
(Note)

Note: If present, this field is a plain-text field. That is, this field contains the confidential parameters as they
exist either before encryption (if the digital signature is generated by the sending agent), or after decryption
(if the digital signature is validated by the receiving agent). For this reason, this field should be erased
immediately after the hash function is computed.

6.2.5.5.1.2.  FLOW2-2WE
For FLOW2-2WE, the SME Digital Signature primitive contains the digital signature as defined in Section
5.1.1.2, and reproduced below:

SigKb(Hash(A, B, Ra, {ConfParb}))

In order to calculate this signature, the hash value is calculated across the buffer shown in Error!
Reference source not found.. Bit ordering within each octet is identical to the bit ordering within the
respective primitives of the Security Services Information Element. In addition, this buffer is padded
according to the appropriate digital signature algorithm procedures.

Table 18: Digital Signature Buffer for FLOW2-2WE.

Symbol Description of Primitive Octets Refer to Section
A Initiator Distinguished Name X.1 - X.4, etc. 6.2.1.1
B Responder Distinguished

Name
X.1 - X.4, etc 6.2.1.2

Ra Initiator Random Number X.1 - X.5 6.2.5.1
(Note 1)

{ConfParb} Confidential Parameters X.1,
X.2, etc.,
X.3, etc.,
X.4, etc

6.2.4.1
(Note 2)

Note 1: These octets are received from the initiator in FLOW1-2WE.

Note 2: If present, this field is a plain-text field. That is, this field contains the confidential parameters as
they exist either before encryption (if the digital signature is generated by the sending agent), or after
decryption (if the digital signature is validated by the receiving agent). For this reason, this field should be
erased immediately after the hash function is computed.
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6.2.5.5.2.  Digital Signature Buffer–Three-Way Exchange Protocol

The contents and structure of the digital signature buffer for flows 2 and 3 of the Three-Way Security
Message Exchange Protocol are defined below.

6.2.5.5.2.1.  FLOW2-3WE
For FLOW2-3WE, the SME Digital Signature primitive contains the digital signature as defined in Section
5.1.1.1, and reproduced below:

SigKb(Hash(A, B, Ra, Rb, SecNega, SecNegb, {ConfParb}))

In order to calculate this signature, the hash value is calculated across the buffer shown in Table 19: Digital
Signature Buffer for FLOW2-3WE.. Bit ordering within each octet is identical to the bit ordering within the
respective primitives of the Security Services Information Element. In addition, this buffer is padded
according to the appropriate digital signature algorithm procedures.

Table 19: Digital Signature Buffer for FLOW2-3WE.

Symbol Description of Primitive Octets Refer to Section
A Initiator Distinguished Name X.1 - X.4, etc. 6.2.1.1
B Responder Distinguished

Name
X.1 - X.4, etc 6.2.1.2

Ra Initiator Random Number X.1 - X.5 6.2.5.1
(Note 1)

Rb Responder Random Number X.1 - X.5 6.2.5.2
SecNega Security Service Specification

Section
X.1,
X.2, etc.,
X.3, etc.

6.2.2
(Note 2)

SecNegb Security Service Specification
Section

X.1,
X.2, etc.,
X.3, etc.

6.2.2

{ConfParb} Confidential Parameters X.1,
X.2, etc.,
X.3, etc.,
X.4, etc

6.2.4.1
(Note 3)

Note 1: These octets are received from the initiator in FLOW1-3WE.

Note 2: These octets are received from the initiator in FLOW1-3WE, and are not sent in FLOW2-3WE.

Note 3: If present, this field is a plain-text field. That is, this field contains the confidential parameters as
they exist either before encryption (if the digital signature is generated by the sending agent), or after
decryption (if the digital signature is validated by the receiving agent). For this reason, this field should be
erased immediately after the hash function is computed.



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 138 ATM Forum Technical Committee

6.2.5.5.2.2.  FLOW3-3WE
For FLOW3-3WE, the SME Digital Signature primitive contains the SME digital signature as defined in
Section 5.1.1.1, and reproduced below:

SigKa(Hash(A, B, Rb, {ConfPara}))

In order to calculate this signature, the hash value is calculated across the buffer shown in Table 20. Bit
ordering within each octet is identical to the bit ordering within the respective primitives of the Security
Services Information Element. In addition, this buffer is padded according to the appropriate digital
signature algorithm procedures.

Table 20: Digital Signature Buffer for FLOW3-3WE.

Symbol Description of Primitive Octets Refer to Section
A Initiator Distinguished Name X.1 - X.4, etc. 6.2.1.1
B Responder Distinguished

Name
X.1 - X.4, etc 6.2.1.2

Rb Responder Random Number X.1 - X.5 6.2.5.2
(Note 1)

{ConfPara} Confidential Parameters X.1,
X.2, etc.,
X.3, etc.,
X.4, etc

6.2.4.1
(Note 2)

Note 1: These octets are received from the responder in FLOW2-3WE.

Note 2: If present, this field is a plain-text field. That is, this field contains the confidential parameters as
they exist either before encryption (if the digital signature is generated by the sending agent), or after
decryption (if the digital signature is validated by the receiving agent). For this reason, this field should be
erased immediately after the hash function is computed.

6.2.5.6. SAS Digital Signature

This octet group contains a digital signature computed over an SAS.  The digital signature value is
computed over the entire contents of the SAS, up to, but not including, this SAS primitive.  An SAS can
contain any number of digital signatures.  The context of all signatures in a particular SAS, i.e., the
signature format, algorithm, and keys needed to calculate the signature, are identical, as the scope of the
context of each signature is defined by the SAS.

Bits
8 7 6 5 4 3 2 1 Octet(s)
1 1 0 1 1 1 0 0

SAS Digital Signature Identifier x.1

Length of Digital Signature Contents x.2

Length of Digital Signature Contents (cont.) x.3

Digital Signature Value x.4 etc.
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Digital Signature Length (Octet x.2-3)

A binary number indicating the length in octets of the digital signature value
contained in octet group x.4, etc.

Digital Signature Value (Octet x.4 etc.)

This field contains the binary encoding of the signature value. The signature is computed
over the encoded contents of this Security Association Section (excluding this digital
signature octet group). The contents of this SAS must remain intact as this SSIE (and
SAS) travels through the network. That is, the network must not change or reorder the
contents of this SAS.

The algorithm-specific details for the SAS Digital Signature Value are identical to those
for the SME Digital Signature Value, found in Section 6.2.5.5.

6.3. DES and FEAL Encryption Bit Ordering

6.3.1. Bit Ordering for Data

The ATM layer encryption process is used to encrypt the 48 payload bytes contained in user cells.  The 48
payload bytes are numbered 1 to 48, and within a byte the bits are numbered 8 to 1 (from left to right), as
defined in the UNI Specification [2].  The DES standard [6] and FEAL standard [32], [33], define 64 bit
input and output data blocks, with the bits numbered 1 to 64 (from left to right). Each ATM cell payload
contains 384 bits, and hence must be divided into 6 equal blocks of 64 bits to perform the encryption.

The mapping of bits from the cell payload into the DES or FEAL encryption algorithm, and then back to the
payload, shall be as shown in Table 21.

Table 21  DES and FEAL Encryption Algorithm Data Bit Ordering

Cell Bit
Position

8 7 6 5 4 3 2 1 ••• 8 7 6 5 4 3 2 1

1 ••• 8
Payload 9 ••• 16

Byte 17 ••• 24
Number 25 ••• 32

33 ••• 40
41 ••• 48

⇓ ⇓ ⇓

DES/
FEAL Bit
Position

1 2 3 4 5 6 7 8 ••• 57 58 59 60 61 62 63 64

6.3.1.1. The Effect of the Mode of Operation

The mapping indicated above applies directly to the ECB mode of operation.  For CBC mode it is intended
that the left most cipher text output bit (DES/FEAL bit position 1) be xored with the leftmost payload bit
(bit 8 of payload bytes 1, 9, ... 41). The result is sent back into DES/FEAL in the left most input bit position
(DES/FEAL bit position 1), and so on.  For the Counter Mode it is intended that the leftmost output bit from
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the DES/FEAL algorithm (DES/FEAL bit position 1) be xored with the leftmost payload bit (bit 8 of
payload bytes 1, 9, ... 41), with the result put back in the leftmost payload bit, and so on. In addition, bit 63
of the state vector is input into the DES/FEAL bit position 1, bit 62 of the state vector into DES/FEAL bit
position 2, and so on.

6.3.2. Bit Ordering for Keys

Encrypted DES/FEAL session keys are transported in the Security Confidential Parameters Information
Element during secure call setup, and in Session Key Exchange OAM cells for key updates.  In both cases,
only the 64 bit key is carried when using FEAL. When using DES, the 64 bit or 128 bit keys for DES or
Triple DES are carried. The use of the DES parity bits after transport is implementation specific, and is not
defined here.

The mapping of DES/FEAL keys from either an Information Element, or an SKE OAM cell, shall be as
shown in Table 22.

Table 22: DES/FEAL Encryption Algorithm Key Bit Ordering.

Bit
Position

8 7 6 5 4 3 2 1 ••• 8 7 6 5 4 3 2 1

Byte
Number

i ••• i + 7

⇓ ⇓ ⇓

DES Bit
Position

1 2 3 4 5 6 7 8 ••• 57 58 59 60 61 62 63 64

Note: Byte number i represents the first byte of the key in either an information element or OAM cell.

6.4. The Counter Mode of Operation

6.4.1. Purpose

This version of the counter mode is intended for use with any 64-bit block encryption algorithm.

Block (or codebook) encryption algorithms are rarely used in a stand-alone fashion because they have
several security weaknesses.  The most serious is that patterns in the plain text are not adequately concealed
in the cipher text.  In addition it is possible to remove, duplicate, and interchange cipher text without
detection.  Typically some form of a feedback mechanism, along with an exclusive OR operation, is used to
overcome these problems.  The feedback information must be retained in memory at both the encryptor and
decryptor, on a per connection basis.

The counter mode is well suited for use with ATM encryption.  It provides an efficient implementation
allowing it to scale to higher data rates than other modes, such as cipher block chaining.  With the counter
mode the feedback information can be updated and restored to memory in parallel with the encryption
algorithm processing.  Second, and perhaps more important, it allows multiple blocks of plain text to be
encrypted in parallel.  For example, an entire 48-byte cell payload can be encrypted in one operation using 6
copies of the encryption algorithm (with a 64-bit block size).  Because each of the 6 payload blocks is given
a unique segment number, implementations that use the parallel encryption approach are completely
interoperable with those that don’t.
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6.4.2. Description

In counter mode both the encryptor and decryptor are synchronously  producing identical key stream, based
on each end having identical State Vectors (SVs) feeding like-keyed encryption algorithms.  This state
vector, which is described in more detail in Section 6.4.6, consists of several fields that contain the results
from various counters and a Linear Recurring Sequence. This ensures that unique key stream values are
used for each block that is encrypted.

Once the key stream value is determined, the encryptor XORs the key stream with the plain text to produce
cipher text.  Similarly, the decryptor XORs the key stream with the cipher text to recover the original plain
text.  A block diagram of this process is shown in Figure 38.  Note that both the encryptor and decryptor use
the encryption algorithm to “encrypt” the SV.

Encryption 
Algorithm 

E(K)

Plain Text Cipher Text

Update 
Function

(bit-by-bit XOR)

Current 
SV

Next 
SV

Key Encryption 
Algorithm 

E(K)

Plain TextCipher Text

Update 
Function

(bit-by-bit XOR)

Current 
SV

Next 
SV

Key

(a) Encryption (b) Decryption

Figure 38.  Counter Mode Block Diagram.

The SV must be changed on every new encryption; otherwise the generator will produce identical key
streams.  The definition of the SV, and the associated processing to update it, are described in later sections.

6.4.3. Properties

With the counter mode, cell loss in the ATM network causes the decryptor to lose cryptographic
synchronization.  The mechanisms for recovering synchronization are described in the following sections.
The counter mode exhibits no error extension however, as a bit error in the cipher text produces only a
single bit error in the plain text.

6.4.4. Cryptographic Synchronization

Cryptographic synchronization is maintained on a per connection basis.  To recover from synchronization
loss the decryptor must be provided with the same State Vector (SV) that the encryptor is using, for a
particular connection.  To accomplish this the encryptor transmits a resync message containing the new SV.
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The encryptor begins using the new SV on the very next cell to occur on that connection.  The decryptor,
upon receipt of the resync message, loads the new SV into its internal memory.  Cell sequence integrity
ensures that the next cell to arrive at the decryptor, on the connection in question, will correspond with the
new SV.

6.4.4.1. SKC OAM Cell

The session key changeover cell defined in Section 5.1.7.2.2 shall be used for both key changeover and
resynchronization.  A key changeover occurs when the Bank ID and key number fields in the SKC OAM
cell are different from those currently in use.  For a resync cell they are the same.  For the counter mode, it
is permissible simply to change the Bank ID of the periodic resync SKC OAM cell processing to perform a
key changeover (after the corresponding SKE processing is completed).  If this approach is taken, no
additional SKC OAM cells are required.

6.4.4.2. Encryptor Processing of SKC OAM Cells

It is the job of the encryptor to insert the SKC OAM cells periodically, at the rate described in Section 7.1.
This applies to both ends of a full duplex connection.  A new SV is computed as follows (see Section 6.4.6
for a definition of the fields in the SV): the jump number is incremented, the I/R is set accordingly, the SEQ
and SEG fields are set to all zeros.  The LFSR is set to the default preset value, 05A5A hex. The new SV is
loaded into internal memory and may also be loaded into the payload of the SKC OAM cell, although only
the jump number is required. The encryptor shall set the other fields in the SV either to their default preset
values or to all zeros. The CRC-10 is computed and inserted at the end of the cell.  The new SV is used to
encrypt the next incoming cell on that connection.

For the case of a key changeover, the encryptor may reset the jump number to any value, although zero is
recommended.  If multiple key changeover SKC OAM cells are transmitted, the jump number is reset for
the first copy, and then incremented thereafter.

6.4.4.3. Decryptor Processing of SKC OAM Cells

Upon receipt of a SKC OAM cell the decryptor verifies that the CRC-10 is correct, and discards the cell if it
is not.  It also verifies that the jump number (see Section 6.4.6 for a definition of the fields in the SV) is
greater than the current jump number in use on that connection, and discards the cell if it is not. An
exception to this rule is made in the case of a key changeover. When the Bank ID and key number of an
SKC OAM cell are different from those currently in use, any jump number is acceptable. If either the CRC-
10 or jump number test fails, the decryptor discontinues processing the OAM cell.  If both tests pass, it
continues as follows.  The decryptor sets the LFSR to the default preset value, 05A5A HEX.  The I/R bit is
unchanged, and the SEQ and SEG fields are set to all zeros.  The decryptor loads the new jump number into
its internal memory and begins using the new SV on the next incoming cell of that connection.  The
decryptor discards the SKC OAM cell, removing it from the cell stream.

6.4.5. Cell Loss Insensitivity

In some applications the performance of secure connections, in the presence of cell loss, may not be
satisfactory.  AAL information is used to improve this performance.  The AAL type of the connection is
obtained during call establishment.

6.4.5.1. AAL1 and AAL3/4 Connections

Cells on AAL1 or AAL3/4 connections contain a 3 or 4 bit cell sequence number, respectively.  This
information is extracted from the cell payload and used as part of the SV.  The LFSR is only updated when
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the sequence number of the received cell is less than or equal to the sequence number of the previous cell
on that connection (i.e., the sequence number has wrapped around).  It is held constant otherwise.  Other
than those cells where the sequence number wraps around, the only part of the SV that changes is the
sequence number extracted from the cell.  This gives immunity to cell loss (up to the maximum size
provided by the sequence number minus one, 7 for AAL1 and 15 for AAL3/4), by maintaining SV
synchronization in the event of dropped cells.

The sequence number must be available from the cipher text cell for this scheme to work.  Therefore, this
field is masked (i.e. excluded) from the XOR function that otherwise encrypts or decrypts the payload with
key stream.

6.4.5.2. AAL5 Connections

AAL5 uses a bit in the PTI field (i.e., PTI = 001 or 011) of the ATM cell header to indicate end-of-message
cells.  After encrypting or decrypting an end-of-message cell, the LFSR is preset to 05A5A hex, and the
jump number is incremented.  Thus, the process automatically resynchronizes at the beginning of each new
packet, provided the end-of-message cell itself is not lost.  Even though the cells after the lost cell(s) are
decrypted incorrectly, no additional negative effects are seen by the user, since the AAL5 receive
processing discards the entire packet anyway.  This process improves the performance of the counter mode
to be roughly identical to the self-synchronizing modes.  If an end-of-message cell is lost, the SKC OAM
cell will eventually resynchronize the decryptor.

6.4.6. State Vector (SV) Definition

The format of the 64 bit SV is shown in Figure 39.  The definition of each of the fields follows.

<-------------------------  64-bits  ---------------------------->

------------------------------------------------------------------
| Galois LFSR |    I/R    | Sequence # |  Segment # |   Jump #   |
------------------------------------------------------------------
 <- 21 bits -> <- 1 bit -> <- 4 bits -> <- 3 bits -> <- 35 bits ->

Figure 39.  64 Bit State Vector (SV) Definition.

6.4.6.1. Galois Linear Feedback Shift Register (LFSR)

The LFSR is a linear non-repeating sequence that is stepped once per cell or once per sequence of cells
depending on AAL type. The LFSR is preset back to its starting value each time the connection is
resynchronized.  The maximum resync interval and the cell rate determine the 21-bit size of the LFSR. At
622 Mbps the maximum interval between resyncs should be 1 second.  A full bandwidth connection at 622
Mbps produces roughly 1.4 million cells/sec.  The LFSR, when clocked at the cell rate, must produce a non-
repeating sequence longer than this.  A 21-bit LFSR produces 2E21-1 = 2,097,151 unique values, satisfying
this condition.  The LFSR on a full bandwidth 622 Mbps connection would not repeat for 1.48 sec.  To
prevent LFSR wrap-around on higher bandwidth connections, the resync period should be proportionally
shortened such that the number of cells sent during the maximum resync period is less than 2,097,151.

An LFSR must implement a primitive polynomial mod 2 in order to maximize its non-repeating sequence.
Non-primitive polynomials will cause the LFSR to repeat at shorter intervals.  From Schneier [35] Table
16.2, the polynomial xE21 + xE2 + 1 is selected and a Galois implementation of this polynomial is
specified.
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The Galois implementation is as shown in Figure 40. Bit 0 is the leftmost bit and the shift is to the left.

+--|   b0   |   b1   |   b2   | .......|   b20  |<---|
|                      /     \                       |
|                      <-(+)--                       |
|                         |                          |
|_________________________|__________________________|

Figure 40.  Galois LFSR.

The update algorithm for the Galois LFSR is defined as follows:

If b0 = 1 (SV negative):
  then
    flip b2 (XOR with pre-defined mask word)
    rotate left (shift left 1 bit) and set b20 to 1
  else
    rotate left (shift left 1 bit) and set b20 to 0
endif

6.4.6.1.1.  LFSR Format in SV

The 21-bit LFSR field of the SV is the first 21 bits of the SV as shown in Figure 41.

              |-----------------------------------------------|
    SV Bit #  | 63  | 62  | 61  | 60  | ... | 45  | 44  | 43  |
              |===============================================|
    LFSR bit# |   0    1     2     3    ...   18    19    20  |
              |-----------------------------------------------|

Figure 41.  21-bit LFSR Format

6.4.6.1.2.  LFSR Processing

For AAL5 connection types the LFSR is updated (or clocked) once per cell, after the cell is encrypted or
decrypted.

For AAL1 and AAL3/4 connections, the LFSR is updated (or clocked) each time the incoming cell
sequence number (read from the cell) is less than or equal to the previous cell sequence number (stored in
SV memory), on that connection.  That is, each time a new cell sequence is detected.  For this case the
LFSR is updated (or clocked) before the cell is encrypted or decrypted.

The LFSR is initialized to a fixed value (005A5A hex) at the beginning of a connection (i.e., during call
setup), and preset to that fixed value when a Secure Key Changeover (SKC) OAM cell is received.  (SKC
cells are sent to resync the connection.)  For AAL5 connections the LFSR is also preset to 0005A5A hex
when an end-of-message cell is received.

Note that the preset value 0005A5A is used to encrypt/decrypt the first cell in all cases. On AAL1 and
AAL3/4 the “previous” sequence number is initialized to zero (in SV memory) so that the first incoming
cell (with seq# = 1) does not update the LFSR.
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In all cases, no action need be taken if the receiver’s LFSR wraps-around.  Because the encryptor’s LFSR is
always reset before it wraps, the receiver will experience an out-of-sync condition before its LFSR ever
wraps around, and, once out-of-sync, LFSR wrap-around is of no significance to the receiver.

6.4.6.2. Initiator/Responder bit

Duplex connections may use the same key for traffic encryption in both directions.  If both directions use
the same SV then a response that enclosed the original message would have part of the cipher text identical
to the original message’s cipher text.  To prevent such an occurrence, an initiator/responder bit is used in
the SV.  This forces the responder’s key stream to be different so enclosing the original plain text would
produce different cipher text.  The I/R bit is set to one for cells flowing away from the calling party
(initiator) toward the called party (responder), and set to zero in the opposite direction.

The I/R bit field of the SV is bit 42 as shown in Figure 42.  Initiator = 1; Responder = 0.

              |------|
    SV Bit #  |  42  |
              |======|
    I/R bit   |  I/R |
              |------|

Figure 42.  I/R Bit Format.

6.4.6.3. Sequence number

For AAL1 connections the most significant bit of the sequence number (bit 41) is set to zero.  The
remaining three bits are extracted from the sequence number within the payload of the cell.

For AAL3/4 connections the sequence number is extracted from the four bit sequence number in the
payload of the cell.  For all other connection types these four bits are set to all zeros.

The 4-bit sequence number field of the SV is bits 41-38 as shown in Figure 43.  The MSB is the leftmost
bit.

                |--------------------------|
    SV Bit #    |  41  |  40  | 39  |  38  |
                |==========================|
    Seq No bit# |   3      2      1     0  |
                |--------------------------|

Figure 43.  Sequence Number Bit Format.

6.4.6.4. Segment number

The 384-bit ATM cell payload is segmented into six 64-bit segments for encryption or decryption.  The
LFSR is held constant for the entire cell payload.  The segment number is a 3-bit field that defines which
64-bit segment within the payload is being encrypted or decrypted.  The segment number for the first 64 bit
segment (i.e., octets 1-8 of the payload) is 000, followed by 001, and so on using a binary count through
101.  The values 110 and 111 are not used.  The format of the segment number in the SV is shown in Figure
44.  The MSB is the leftmost bit.
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                  |--------------------|
    SV Bit #      |  37  |  36  |  35  |
                  |====================|
    Seg No bit#   |   2      1      0  |
                  |--------------------|

Figure 44.  Segment Number Bit Format.

6.4.6.5. Jump Number

The jump number is initialized to all zeros at call setup time and incremented each time a resync SKC OAM
cell is sent or, on AAL5 connections, with each end-of-message cell.  A 35-bit jump number allows 2E35-1
or 3.44x10E+10 resyncs without repeating.

This ensures the SV is always unique so that repeating patterns in the plain text will not show through in the
cipher text.

For example, a full bandwidth 622 Mbps connection (1,416,907 cells/sec), with a cell loss ratio of 10E-4,
requires 1417 resyncs per second (10x the expected number of cells lost per second).  At this rate the jump
number won’t repeat for 2.42x10E+07 seconds, about 280 days or 9 months.  At this point in time, key
stream will start to repeat.  To avoid reusing key stream, the session key should be changed prior to the
expiration of this period.  The implementation should prevent Jump number wrap-around.  A Jump number
of all ones should be considered an error condition.

The format of the Jump number is shown in Figure 45.  The MSB is on the left.  The jump number is
incremented as a binary count.

              |-----------------------------------------------|
  SV Bit #    |  34 | 33  | 32  | 31  | ... |  2  |  1  |  0  |
              |===============================================|
  Jump No bit |  34   33    32    31    ...    2     1     0  |
              |-----------------------------------------------|

Figure 45.  35-Bit Jump Number Format.

Of the 64-bit SV, the jump number is the only field required to be transmitted to the receiver during a
resync or key changeover.  The other fields in the SV are preset to their default values.

When an SKC OAM cell is transmitted, the sender places its current Jump number in Octets 17-21 as shown
below in Figure 46. The remaining bits (bits 4-8 in Octet 17 and Octets 14-16) are set to zero.

The receiver copies the Jump number from the SKC OAM cell into the SV for that connection only if the
new Jump number is greater than the previous Jump number.  SKC OAM cells containing Jump numbers
less than or equal to the previous Jump number are rejected and this should be treated as an error condition.
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             |-----------------------------------------------|
             |  8  |  7  |  6  |  5  |  4  |  3  |  2  |  1  |
             |===============================================|
    Octet 17 |                               34    33    32  |
             |-----------------------------------------------|
    Octet 18 |  31   30    29    28    27    26    25    24  |
             |-----------------------------------------------|
    Octet 19 |  23   22    21    20    19    18    17    16  |
             |-----------------------------------------------|
    Octet 20 |  15   14    13    12    11    10     9     8  |
             |-----------------------------------------------|
    Octet 21 |  7     6     5     4     3     2     1     0  |
             |-----------------------------------------------|

Figure 46.  Jump Number Position Within SKC OAM Cell.

6.4.7. Using the Counter Mode with Triple DES

When using Triple DES, or multiples of any encryption algorithm, the application of the counter mode must
be clarified.  It is intended that the counter be applied as follows:

Cipher text = Ek1(Dk2(Ek1(SV))) XOR plain text

Plain text  = Ek1(Dk2(Ek1(SV))) XOR cipher text

6.5. Asymmetric Authentication Using ESIGN

6.5.1. Basic Procedure

Private Key:

       p; a large prime number,

       q; a large prime number (p > q).

Public Key:

       n = p2 q.

       k; an integer (4≤k),

Signature Generating:

       x; chosen at random (0 ≤ x ≤ pq-1),

       d; the least integer that is larger or equal to

            |n|/3 where |n| is a bit length of n,

       m; a input data to be signed (m < n/22d),
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       w; the least integer that is larger or equal to (m 22d - (xk mod n))/(pq),

       y = w/(k xk-1) mod p,

       S = x + ypq,

       ESIGN(p, q)(m) is defined by a value S.

Verifying:

       ESIGN(n, k)(S) is defined as the upper d-bit value of Sk mod n. When m’ = ESIGN(n, k)(S), accept

       (m’, S) as valid if m’ contains information which a verifier wants to verify.

Note : In normal case, accept (M, S) if H’  = H”  where m’ contains a hash value H’  = Hash(M), and

      H”  = Hash(M) is newly generated from an original message M by a verifier.

6.5.2. Precomputation Procedure

ESIGN’s basic procedure can be accelerated if the Signature Generating process is divided into two parts:

Signature Generating:

 a) Precomputation

        x; chosen at random (0≤x≤pq-1),

        u = xk mod n,

        v=1/(k xk-1) mod p.

b) Signing (accelerated)

        w; the least integer that is larger or equal to (m 22d - u)/(pq),

        y = wv mod p,

        S = x + ypq.

Even if one cannot determine an input data m, parameters u and v related to x can be computed separately.
Just after selecting m, only the remaining part b) is calculated by using u and v. ESIGN can be accelerated
to about ten times faster than the non-precomputation procedure. For example, if one uses a typical 8-bit
microprocessor (f=5 MHz), a signature generation delay time can be reduced from about 0.4 s to 0.05 s
where its precomputation delay is about 0.4 s.

6.5.3. Example

A small example for ESIGN is presented. Although the size of private keys (p, q) of ESIGN should be more
than 170 bits, the example is useful to understand.
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Private Key :(Note1 )

       p = 1000033,

       q = 1000003.

Public Key:

       n = 1000069001287003267.

Signature Generating:

       x = 878087808780,

       k = 1024,

       m = 641219,

       w = 172197; the least integer that is larger or equal to

             (641216 x 1099511627776 - (8780878087801024 mod 1000069001287003267))/10403

       y = 172197/(1024 x 8780878087801023) mod 1000033 = 49898, (Note2 )

       S = 878087808780 + 49898 x 1000033 x 1000003 = 49900674420748682,

       d = 20; the least integer that is larger or equal to |n|/3 where |n|

             is a bit length 60.

Verifying:

       Accept (m’, S) as valid because the upper 20-bit value of m’ = Sk mod n

       = 499006744207486821024 mod 1000069001287003267 = 705028336500982591

       (= 100111001000110000111000100101100001101110011100001100111111 in binary

       representation) equals 641219 (= 10011100100011000011 in binary representation) = m”

       where m”  contains information which a verifier wants to verify.

                                                          

1 Private key candidates for p, q can be easily checked by division by all prime numbers from 2 to their
square roots, respectively. However, since the real candidates are larger than 100 bits, one must check them
by using more efficient primality testing methods such as the Rabin method.

2 The equation of y is modified to:
        y = 172197 x 878087808780 / (1024 x 8780878087801024) mod 1000033.
After 1024 x 8780878087801024 mod 1000033 is computed, one can compute its inverse modulo,
(1024 x 8780878087801024)-1 mod 1000033. This is carried out by using the extended Euclidian algorithm.



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 150 ATM Forum Technical Committee

6.6. Block Cipher/CBC Mode Message Authentication Code

Another method for providing the MAC for AAL SDU data integrity is to use a block cipher in the cipher
block chaining (CBC) mode of operation, which is described in detail in ISO/IEC 9797 [17]. Note that
when this method is used for data integrity protection, the block cipher is responsible for generating a
MAC, not for encrypting data.

6.6.1. Padding and Blocking

This method first requires that the AAL SDU data be padded. The SDU may be appended with as few
(possibly none) “0” bits as necessary to obtain a data string whose length (in bits) is an integer multiple of n
(the block size of the algorithm).

The resulting data is divided into n-bit blocks (D1,D2,...,Dq). This padded data is only used for calculating
and verifying the MAC. Consequently, the padding bits (if any) are not stored or transmitted with the data.

6.6.2. The Cryptographic Key

The key should be randomly or pseudo-randomly generated. If the same algorithm is used for encipherment
of the message, the key used for the calculation of the MAC should be different from that used for
encipherment.

6.6.3. The Initial Stage

The MAC is calculated as illustrated in Figure 47.

The input register is initialized with the first block (D1).This input data (I1) is passed through the algorithm
(A), which uses a key (K) to produce n bits in the output register (O1).
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Figure 47.  CBC-MAC Calculation.

6.6.4. Subsequent Stages

The next n bits of data (D2) are bitwise exclusive or’ed with the n bits of the output register (O1) and the
result is loaded into the input register of the next stage (I2).  The contents of the input register (I2) is passed
through the algorithm (A), which uses the key (K) to produce n bits in the output register (O2).

This operation continues until all blocks have been processed. The result will be the output block (Oq).

6.6.5. Output Process

To increase the strength of the CBC MAC, the output block Oq is subjected to an output process. This
process uses an additional key, K1, which is the bitwise complement of the key original key K (as shown in
the examples in Sections 6.6.6.1 and 6.6.6.2).
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The n-bit block (Oq) is first generated using key (K) in the procedure specified in Sections 6.6.3 and 6.6.4.
After Oq is generated, two additional steps shall then be performed (see Figure 48):

        a) decipher the output (Oq) using key (K1) to obtain (O’q):
        b) encipher (O’q) using key (K)  to obtain (O"q).

This completes the output process, and the resulting n bits is the MAC.

Oq

A
decipher

O ’ q

A
encipher

K1

K

O” q

n -b it  M A C

Figure 48.  CBC-MAC Output Process.
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6.6.6. CBC-MAC Examples

This section presents examples of the generation of a MAC employing the DES and FEAL block
encipherment algorithms. The messages are 7-bit ASCII codes (no parity) for “ Now_is_the_time_for_all_”
and “ Now_is_the_time_for_it”  where “ _”  denotes a blank. The first message does not require any padding.
The key (K) is 0123456789ABCDEF. The key (K1) for the output process is FEDCBA9876543210.

6.6.6.1. Examples using DES

Example 1: Now_is_the_time_for_all_

-----------------------------------------
key(K)        : 01 23 45 67 89 AB CD EF
-----------------------------------------
D1            : 4E 6F 77 20 69 73 20 74
D2            : 68 65 20 74 69 6D 65 20
D3            : 66 6F 72 20 61 6C 6C 20
-----------------------------------------
I1 = D1       : 4E 6F 77 20 69 73 20 74
O1            : 3F A4 0E 8A 98 4D 48 15
I2 = O1 XOR D2: 57 C1 2E FE F1 20 2D 35
O2            : 0B 2E 73 F8 8D C5 85 6A
I3 = O2 XOR D3: 6D 41 01 D8 EC A9 E9 4A
O3            : 70 A3 06 40 CC 76 DD 8B
-----------------------------------------

Output Process:

-----------------------------------------
key(K1)       : FE DC BA 98 76 54 32 10
-----------------------------------------
O’3           : B4 8D 36 EC 7A D5 69 4F
O"3           : A1 C7 2E 74 EA 3F A9 B6
-----------------------------------------

The MAC is O"3 = A1 C7 2E 74 EA 3F A9 B6

Example 2: Now_is_the_time_for_it

-----------------------------------------
key(K)        : 01 23 45 67 89 AB CD EF
-----------------------------------------
D1            : 4E 6F 77 20 69 73 20 74
D2            : 68 65 20 74 69 6D 65 20
D3            : 66 6F 72 20 69 74 00 00
-----------------------------------------
I1 = D1       : 4E 6F 77 20 69 73 20 74
O1            : 3F A4 0E 8A 98 4D 48 15
I2 = O1 XOR D2: 57 C1 2E FE F1 20 2D 35
O2            : 0B 2E 73 F8 8D C5 85 6A
I3 = O2 XOR D3: 6D 41 01 D8 E4 B1 85 6A
O3            : E4 5B 3A D2 B7 CC 08 56
-----------------------------------------
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Output Process:

-----------------------------------------
key(K1)       : FE DC BA 98 76 54 32 10
-----------------------------------------
O’3           : 32 8A C7 8B A1 CA 0B 3F
O"3           : 2E 2B 14 28 CC 78 25 4F
-----------------------------------------

The MAC is O"3 = 2E 2B 14 28 CC 78 25 4F

6.6.6.2. Examples using FEAL-32

Example 1: Now_is_the_time_for_all_

-----------------------------------------
key(K)        : 01 23 45 67 89 AB CD EF
-----------------------------------------
D1            : 4E 6F 77 20 69 73 20 74
D2            : 68 65 20 74 69 6D 65 20
D3            : 66 6F 72 20 61 6C 6C 20
-----------------------------------------
I1 = D1       : 4E 6F 77 20 69 73 20 74
O1            : BF 68 7E 85 FC 63 A5 2A
I2 = O1 XOR D2: D7 0D 5E F1 95 0E C0 0A
O2            : 30 95 39 95 1A CF 62 1B
I3 = O2 XOR D3: 56 FA 4B B5 7B A3 0E 3B
O3            : 2A 7A C2 E7 67 0E B9 EC
-----------------------------------------

Output Process:

-----------------------------------------
key(K1)       : FE DC BA 98 76 54 32 10
-----------------------------------------
O’3           : 5E D4 4C 5A D1 E5 61 EF
O"3           : 88 02 6E 69 54 5B 63 23
-----------------------------------------

The MAC is O"3 = 88 02 6E 69 54 5B 63 23

Example 2: Now_is_the_time_for_it

-----------------------------------------
key(K)        : 01 23 45 67 89 AB CD EF
-----------------------------------------
D1            : 4E 6F 77 20 69 73 20 74
D2            : 68 65 20 74 69 6D 65 20
D3            : 66 6F 72 20 69 74 00 00
-----------------------------------------
I1 = D1       : 4E 6F 77 20 69 73 20 74
O1            : BF 68 7E 85 FC 63 A5 2A
I2 = O1 XOR D2: D7 0D 5E F1 95 0E C0 0A
O2            : 30 95 39 95 1A CF 62 1B
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I3 = O2 XOR D3: 56 FA 4B B5 73 BB 62 1B
O3            : C9 78 9A 54 72 24 D8 E2
-----------------------------------------

Output Process:

-----------------------------------------
key(K1)       : FE DC BA 98 76 54 32 10
-----------------------------------------
O’3           : AA 10 A1 5B 3D 95 12 F7
O"3           : B6 72 A6 02 1C EA D2 03
-----------------------------------------

The MAC is O"3 = B6 72 A6 02 1C EA D2 03

6.7. DES-40

DES40 is a variant of DES. It uses an effective 40-bit key instead of the 56-bit key.

The key is presented as a 64-bit value with bits numbered k1 through k64 (where k1 is the most significant
bit, and k64 is the least significant bit). k8, k16, k24, k32, k40, k48, k56, and k64 are ignored by DES and
can be used to parity check the key.

The following bits shall be set to 0:

        k1-4, k17-k20, k33-k36, k49-k52.

These are the top 4 bits of the 1st, 3rd, 5th, and 7th bytes of the key.

6.8. Algorithm-Specific Use of Security Message Exchange
Protocols

The security message exchange protocols described in Section 5.1 are not dependent on the use of any
specific cryptographic algorithm. In the following sections, the use of these protocols with Diffie-Hellman
for key exchange, with RSA for digital signature and key exchange, and with DSA for digital signature are
specified.

6.8.1. RSA - Digital Signature and Key Exchange

RSA is a public-key algorithm that works for both encryption and digital signatures. The security of RSA
depends on the difficulty of factoring large numbers. The public and private keys of RSA are generated as
follows: Two random positive large prime integers, p  and q  are selected. Their product n pq=  is

computed. n  is called the public modulus. A random positive integer e  less than n  and relatively prime to
product ( )( )p q− −1 1  is selected. This means that e  and ( )( )p q− −1 1  have no common factor except 1.

Then, a positive integer d  such that de − 1 is divisible by ( )( )p q− −1 1  is computed. In other words,

d e p q= − −−1 1 1mod(( )( )) . The values e and d  are called the public and private exponent, respectively.

The public key is the pair ( , )e n  and the private key is the pair ( , )d n . Once the public and private keys are
computed, the prime factors, p  and q  are no longer needed and shall be either kept secret or destroyed.
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An important property of RSA is that the steps of encryption and decryption can be reversed, i.e.,
data RSA RSA data RSA RSA datae n d n d n e n= =( , ) ( , ) ( , ) ( , )( ( )) ( ( )) . This property allows it to work for both

encryption as well as for digital signatures.

In the following discussion, it is assumed that each authentication entity (A and B) possesses a
public/private RSA key pair. Each authentication entity must either know or obtain its partner’s public key.
The three-way security message exchange protocol provides an option for the authentication entities to
exchange certificates (which contain public key information). When supported, the authentication entities
may use the certificate exchange option of the three-way security message exchange protocol to obtain each
other’s public key.

RSA can be used in both the two- and three-way security message exchange protocols for both digital
signature as well as key exchange.

In the following discussions, upper-case italic symbols (e.g., PS) denote octet strings and lower-case italic
symbols (e.g., n) denote integers.

6.8.1.1. RSA Encryption/Decryption Processes

The following sections describe the encryption/decryption process that shall be used in the two- and three-
way security message exchange protocol when RSA is used for digital signature and/or key exchange. The
encryption/decryption process described here is based on the methods of PKCS#1 [[24].

6.8.1.1.1.  RSA Encryption Process

Let the length of the modulus n in octets be K. The length K of the modulus shall be at least 12 octets to
accommodate the block formats defined here. The message (M) to be encrypted shall have a length which is
an integer multiple of 8 bits. To encrypt M, first divide it into data blocks of  length K-11 octets, which is
positive since the length K is at least 12 octets.

M M M Mm= 1 2, ,... , where m ≥ 1

The last data block (i.e., Mm ) may be of length less than K-11 octets. Encrypt each data block Mi  using

the four-step process described below to obtain EMi . Then, concatenate the individually encrypted data

blocks to obtain the encrypted message EM.

EM EM EM EMm= 1 2, ,. .., where m ≥ 1

Let D represent any data block (Mi ) of the message M. The encryption process of D consists of  four steps

which are described below.

1. Encryption-block formatting: Format the data block D to an encryption block (EB) octet string as
follows.

EB = 00, BT, PS, 00, D
A 00 octet, a block type (BT) octet, a padding string (PS) octets, and a 00 octet are prepended to the
data block D to form the encryption block (EB). The leading 00 octet ensures that the encryption block
EB value will be less than the modulus n when it’s converted to an integer. The block type BT octet
shall be set to 01 for private-key operation and shall be set to 02 for public-key operation. The padding
string PS shall consist of  K D− −3  octets (where D  is the length of D in octets). The PS octet

string shall be pseudorandomly generated and must have no octet with 00 value. The randomness of PS
strengthens the security of RSA encryption. So, the total length of the encryption block (EB) is equal to
K octets.
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2. Octet-string to integer conversion: Convert the encryption block EB to an integer x . Let
EB EB EBK1 2, , ...,  be the octets of EB from first to last. Then the integer x  shall satisfy

x EBK i
i

i

K

= −

=
∑28

1

( ) where [ ]EBi  0 255..

With this representation, the first octet EB1  is the most significant in the integer x  and the last octet

EBK  is the least significant.

3. RSA computation: Compute the RSA classical computation of the integer x  as follows. Raise x  to
the power c  modulo n  to obtain y , the integer encrypted data block.

y x nc= mod 0 ≤ <y n

For  a private-key operation, the integer c  is an entity’s private exponent d ; for  a public-key
operation, the integer c  is an entity’s public exponent e .

4. Integer to octet-string conversion: Convert the integer encrypted data y  to an octet string ED of

length K  octets. The encrypted data ED shall satisfy

y EDK i
i

i

K

= −

=
∑ 28

1

( ) where [ ]EDi  0 255..

where ED ED EDK1 2, ,...,  are the octets of ED from first to last. The first octet ED1  is the most

significant in the integer and the last octet EDK  is the least significant.

6.8.1.1.2.  RSA Decryption Process

Let the length of the modulus n in octets be K. To decrypt the encrypted message EM, first divide it into m
data blocks of  length K octets. (Note that the length of EM is an integer multiple of K octets.)

EM EM EM EMm= 1 2, ,. .., where m ≥ 1

Decrypt each data block EMi  using the four-step process described below to obtain Mi . Then, concatenate

the individually decrypted data blocks to obtain the message M.

M M M Mm= 1 2, ,... , where m ≥ 1

Let ED represent any encrypted data block (EMi ) of the message EM. The decryption process of ED

consists of  four steps that are described below.

1. Octet-string to integer conversion: Convert the encrypted data ED of length K octets to an integer y .

The octet string ED shall satisfy

y EDK i
i

i

K

= −

=
∑ 28

1

( ) where [ ]EDi  0 255..

where ED ED EDK1 2, ,...,  are the octets of ED from first to last. The first octet ED1  is the most

significant in the integer and the last octet EDK  is the least significant.

2. RSA computation: Compute the RSA classical computation of the integer y  as follows. Raise y  to

the power c  modulo n  to obtain x , the integer decrypted data block.

x y nc= mod 0 ≤ <x n



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 158 ATM Forum Technical Committee

For a private-key operation, the integer c  is an entity’s private exponent d ; for a public-key operation,
the integer c  is an entity’s public exponent e .

3. Integer to octet-string conversion: Convert the integer x  to encryption block EB of length K octets.
Let EB EB EBK1 2, , ...,  be the octets of EB from first to last. Then the integer x  shall satisfy

x EBK i
i

i

K

= −

=
∑28

1

( ) where [ ]EBi  0 255..

With this representation, the first octet EB1  is the most significant in the integer x  and the last octet

EBK  is the least significant.

4. Encryption-block parsing: Parse the encryption block (EB) octet string into a block type BT, a
padding string PS, and the data block D as follows.

EB = 00, BT, PS, 00, D
The padding scheme allows the encryption block EB to be parsed unambiguously without knowing the
length of the data block D. This is because the padding string PS contains no octets with value 00 and
the padding string is separated from the data block D by an octet with value 00.

6.8.1.2. Digital Signature

The following sections describe the digital signature generation and validation with RSA using the methods
of PKCS#1 [[24].

Signature Generation:

For digital signature computation, the message (M) to be signed is first reduced using a hash algorithm (e.g.,
SHA-1) and then the hash value is encrypted with the RSA private key of the signer (i.e., the authentication
entity that’s generating the signature) using the RSA encryption process described above.

Refer to Sections 6.2.5.5.1 and 6.2.5.5.2 for specifications on constructing the digital signature buffer (or
message) M.

The procedure to compute the digital signature (S) over the message M is as follows.

1. Run a hash algorithm (e.g., SHA-1) over M to produce a hash octet string H.
H Hash M= ( )

2. Encrypt H with the RSA private key of the signer (i.e., the authentication entity that’s generating the
signature) using the RSA encryption process described above to obtain a digital signature octet string S.

S RSA Hd n= ( , ) ( )

The signature octet string S is placed in the “Digital Signature Value” field in the appropriate digital
signature primitive of the Security Services Information Element (SSIE).

Signature Verification:

For digital signature verification, the signature (S) octet string is first decrypted with the signer’s RSA
public key (using the RSA decryption process described above) and then compared with the hash of the
message (M).
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The procedure to verify the digital signature (S) over the message M is as follows.

1. Decrypt the digital signature S with the RSA public key of the signer (i.e., the authentication entity that
generated the signature) using the RSA decryption process described above to obtain the octet string
H ’ .

H RSA Se n’ ( )( , )=

2. Run the hash algorithm used to generate the signature over M to produce a hash octet string H" .
H Hash M" ( )=

3. Compare the octet strings H ’  and H" . If they are equal, the signature verification process shall be
successful, and it shall fail otherwise.

6.8.1.3. Key Exchange

Key exchange with RSA is achieved by encrypting the key (C) to be exchanged  with the RSA public key of
the recipient (i.e., the entity that should receive the key). The “Confidential Data” part (i.e., octet x.4 and
higher) of the “Confidential Section” of the SSIE (see Section 6.2.4) contains the key (or keys) to be
exchanged.

Sender’s procedure:

Let C represent the octet string of the “Confidential Data” in the SSIE. The sender first encrypts C with the
RSA public key of the receiver using the RSA encryption process described above to obtain an octet string
EC.

EC RSA Ce n= ( , ) ( )

Then, the sender replaces the entire octet string of the “Confidential Data” in the SSIE with EC and adjusts
the length field for the Confidential Section if the length of EC is different from the length of C.

Receiver’s procedure:

The receiver decrypts EC with its RSA private key using the RSA decryption process described above to
obtain the octet string C.

C RSA ECd n= ( , ) ( )

6.8.2. DSA - Digital Signature

DSA is a public-key algorithm that can only be used for digital signatures. The security of DSA depends on
the difficulty of computing discrete logarithms modulo a prime  (i.e., in a prime finite field). A detailed
description of the DSA algorithm can be found in [9].

DSA uses a number of public parameters in its operation. These parameters are p (a prime modulus), q (a
prime divisor of p-1), and g (a generator). These parameters, along with the public key y, are contained in
the DSA certificate for the user that generates the DSA digital signature (the private key x is kept secret by
the user). In the following discussion of ATM authentication using DSA, it is assumed that each
authentication entity (A and B) possesses a public/private DSA key pair, and that any entity which wishes to
verify the signature has access to p, q, g, and y.

In order to generate a digital signature, the Digital Signature Standard [9] specifies the use of the Secure
Hash Algorithm, which is defined in [8]. SHA-1 is used in DSS to generate a “fingerprint” of the message,
which is then encrypted using DSA to bind the fingerprint to the signing entity. In order to generate the
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SHA-1 “fingerprint,” the message must be padded such that its length is an integer multiple of 512 bits.
This procedure, which is defined in [8], is summarized below:

SHA-1 padding procedure

Pad the message to produce a new message  M, the length of which is a multiple of 512 bits. The
padding is performed as follows:

1. Store the current length (in bits) of the message  for later use.

2. Append a “1” bit to the original message data, followed by enough “0” bits to make the length
of the new message 64 bits short of a 512 bit boundary.

3. Store the binary encoding of the message  length (in bits) in the final 64 bits of the new
message  M. At this point, the length of M is a multiple of 512 bits.

In order to perform ATM authentication using SHA-1 and DSA, octet strings (e.g., padded message, DSA
parameters, etc.) must be converted to integers. This conversion is defined in [9], and is summarized below:

Octet-String to Integer Conversion

An integer x is computed from a block of K octets B1, B2, ..., BK  as follows:

x BK i
i

i

K

= −

=
∑28

1

( ) where [ ]Bi  0 255..

where B1 (the leftmost octet) is the most significant octet.

In order to transport DSA parameters in ATM information elements, integers (e.g., public parameters,
signatures, etc.) must be converted to octet strings. This conversion is defined in [9] and is summarized
below:

Integer to Octet-String Conversion

Given an integer x, determine a block of K octets B1, B2, ..., BK  such that the following relation applies:

x BK i
i

i

K

= −

=
∑28

1

( ) where [ ]Bi  0 255..

where B1 (the leftmost octet) is the most significant octet.

6.8.2.1. DSA Digital Signature Generation

The following steps are required to produce a DSA digital signature for use in the Security Message
Exchange Protocols:

1. Construct the digital signature buffer according to the procedures defined in Sections 6.2.5.5.1and
6.2.5.5.2.

2. Pad the digital signature buffer to produce a message M using the padding procedure defined in [8]
(and summarized earlier).
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3. Calculate the SHA-1 hash H=SHA(M) as defined in [8] and convert the resulting octet string to a
160-bit (20 octet) integer as specified in [9] (and summarized earlier).

4. Calculate r and s as defined in [9].

5. Convert the 160-bit (20-octet) quantities r and s to octet strings using the procedure defined in [9]
(and summarized earlier).

6. Insert the octet strings r and s into the “Digital Signature Value” in the appropriate digital
signature primitive of the Security Services Information Element (SSIE).

6.8.2.2. DSA Digital Signature Verification

The following steps are required to validate a DSA digital signature when used in the Security Message
Exchange Protocols:

1. Construct the digital signature buffer according to the procedures defined in Sections 6.2.5.5.1 and
6.2.5.5.2.

2. Pad the message  to produce a new message  M’ using the padding procedure defined in [8] (and
summarized earlier).

3. Calculate the SHA-1 hash H’=SHA(M’) as defined in [8] and convert the resulting octet string to a
160-bit (20 octet) integer as specified in [9] (and summarized earlier).

4. Extract the received values of r and s from the “Digital Signature Value” field of the appropriate
digital signature primitive of the SSIE. Convert the r and s octet strings to 160 bit (20 octet)
integers r’ and s’ using the procedure defined in [9] (and summarized earlier).

5. Calculate v as defined in [9].

6. If v=r’ , then the signature verification process shall be successful. Otherwise, it shall fail.

6.8.3. ESIGN - Digital Signature

ESIGN is a public-key algorithm that can only be used for digital signatures. The security of ESIGN
depends on the difficulty of factoring large numbers. A detailed description of the ESIGN algorithm can be
found in Section 6.5.

The public and private keys of ESIGN are generated as follows: Two random positive large prime integers,
p and q (p > q) are selected. Their product n = p2 q is computed. n is called the public modulus. The private
key for signature process is the pair (p, q) (p > q) and the public key for verification process is the pair (n,
k) where k is an integer (4 ≤ k). A positive integer d is computed which is the least integer that is larger or
equal to |n|/3 where |n| is a bit length of n.

ESIGN Signature Process  SD = ESIGN(p, q)(SB)

1. Octet-string to integer conversion: Convert the signature block SB to an integer m. Let an integer d
be 8K and SB1, SB2, ..., SBK be the octets of SB from first to last. Then, an integer m to be signed shall
satisfy

 m SBK i
i

i

K

= −

=

28

1

( ) where [ ]SBi  0 255,...,
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 With this representation, the first octet SB1 has the most significance in the integer m and the last octet
SBK has the least significance.

2. ESIGN computation: Compute the ESIGN computation of the integer m to obtain S as follows: After
a random positive integer x less than pq - 1 is selected,

 
( )

w
m x n

pq

d k

=
−ê 22 mod

,

 y
w

kx
p

k
= −1

mod , and

 S x ypq= + .

 Clear definitions are described in Section 6.5.

3. Integer to octet-string conversion: Convert the integer signed data S to an octet string SD of length
3K octets. The signed data SD shall satisfy

S SDK i
i

i

K

= −

=

28 3

1

3
( ) where [ ]SDi  0 255,...,

where SD1, SD2, ..., SD3K are the octets of SD from first to last. The first octet SD1 has the most
significance in the integer and the last octet SD3K has the least significance.

ESIGN Verification Process SB = ESIGN(n, k)(SD)

1. Octet-string to integer conversion: Convert the signed data SD of length 3K octets to an integer S.
The octet string SD shall satisfy

S SDK i
i

i

K

= −

=

28 3

1

3
( ) where [ ]SDi  0 255,...,

where SD1, SD2, ..., SD3K are the octets of SD from first to last. The first octet SD1 has the most
significance in the integer and the last octet SD3K has the least significance.

2. ESIGN computation: Compute the ESIGN computation of the integer S to obtain m as follows;

 m
S nk

d
=

ë

mod

22
.

 Clear definitions are described in Section 6.5.

3. Integer to octet-string conversion: Convert the integer m to signature block SB of length K octets. Let
SB1, SB2, ..., SBK be the octets of SB from first to last. Then the integer m shall satisfy

m SBK i
i

i

K

= −

=

28

1

( ) where [ ]SBi  0 255,...,

With this representation, the first octet SB1 has the most significance in the integer m and the last octet
SBK has the least significance.
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6.8.3.1. ESIGN Signature Generation:

For digital signature computation, the message (M) to be signed is first reduced using a hash algorithm (e.g.,
SHA-1) and then the hash value is signed with the ESIGN private key of the signer (i.e., the authentication
entity that’s generating the signature) using the ESIGN signature process in [29] [34].

Refer to Sections 6.2.5.5.1 and 6.2.5.5.2 for specifications on constructing the digital signature buffer (or
message) M.

The procedure to compute the digital signature (SD) over the message M is as follows:

1. Run a hash algorithm (e.g., SHA-1) over M to produce a hash octet string H.

 H = Hash(M)

2. Format the hash data H to a signature block (SB) octet string as follows.

 SB = 00, PS, FF, H

 A 00 octet, a padding string (PS) octets, and a FF octet are prepended to the hash value H to form the
signature block (SB). The leading 00 octet ensures that the signature block SB value will be less than
2d when it’s converted to an integer. The padding string PS shall consist of K-2-||H|| octets (where ||H||
is the length of H in octet). The PS octet string shall have no octet with FF value. The total length of
the signature block (SB) is equal to K octets.

3. Sign to SB with the ESIGN private key of the signer (i.e., the authentication entity that’s generating the
signature) using the ESIGN signature process described above to obtain a digital signature octet string
SD. The total length of the signed data (SD) is equal to 3K octets.

SD = ESIGN(p, q)(SB)

The signature octet string SD is placed in the “Digital Signature Value” field in the appropriate digital
signature primitive of the Security Services Information Element (SSIE).

6.8.3.2. ESIGN Signature Verification:

For digital signature verification, the signature (SD) octet string is verified with the signer’s ESIGN public
key and the hash of the message (M). The procedure to verify the digital signature (SD) over the message M
is as follows:

1. Verify the digital signature SD with the ESIGN public key of signer (i.e., the authentication entity that
generated the signature) using the ESIGN verification process described above to obtain the octet string
SB’.

 SB’ = ESIGN(n, k)(SD).

2. Parse the signature block (SB’) octet string into a padding string PS, and the data block H’  as follows.

SB’ = 00, PS, FF, H’

The padding scheme allows the signature block SB’ to be parsed unambiguously without knowing the
length of the hash value H’ . This is because the padding string PS contains no octets with value FF
and the padding string is separated from the data block H’  by an octet with value FF. Then, the H’  is
picked out to verify.

3. Run the hash algorithm used to generate the signature over M to produce a hash octet string H” .
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H” = Hash(M)

Compare the octet string H’ and H”. If H’ is equal to H”, the signature verification process shall be
successful, and it shall fail otherwise.

6.8.4. Diffie-Hellman Key Exchange

Diffie-Hellman is a public-key algorithm that allows two parties (say A and B) to come up with a secret
shared key that is known only to them. The two parties first agree on a pair of public parameters: p , a

positive large prime integer and g , a positive integer. These two parameters are not secret. p  is called the

public modulus and g  is called the public base. The base must satisfy 0 < <g p . The party A generates a

private random integer a  such that 0 1< < −a p  and computes x g pa= mod , where 0 < <x p . The

values a  and x  are called the private and public key of A, respectively. Similarly, the party B generates a

private random integer b  such that 0 1< < −b p  and computes y g pb= mod , where 0 < <y p . The

values b  and y  are called the private and public key of B, respectively. Then, the two parties exchange

their public keys, i.e., A sends x  to B and B sends y  to A. The public keys are not secret. Then, each party

independently computes the Diffie-Hellman integer secret shared key z .  That is A computes z y pa= mod

and B computes z x pb= mod , where 0 < <z p .

Since Diffie-Hellman is a key exchange algorithm and does not protect against man-in-the-middle attack, it
shall be used in combination with a digital signature algorithm (such DSA, RSA, etc.) to protect the
exchange of public keys when used over an insecure channel. Additionally, the use of the Diffie-Hellman
algorithm itself is limited to the three-way security message exchange protocol. The reason for this
limitations is that the two-way security message exchange protocol cannot support Diffie-Hellman because
encrypting ConfPara  in flow 1 would require the knowledge of the secret shared key, which is not

established yet.

The procedure for adding leaves to a pt-mpt call, when the Diffie-Hellman key exchange algorithm is used,
is defined in Section 5.2.3.

6.8.4.1. Diffie-Hellman With Three-Way Security Message Exchange Protocol

The initiator first selects p  (the public modulus) and g  (the public base) and computes its public key x .

The initiator converts the integers p , g , and x  to octet strings P, G, and X, respectively.

Integer to octet-string or octet-string to integer conversion: Let r  be an integer and R be its
corresponding octet string of length K  octets. The octet string R shall satisfy

r RK i
i

i

K

= −

=
∑28

1

( ) where [ ]Ri  0 255..

where R R RK1 2, ,...,  are the octets of R from first to last. The first octet R1  is the most significant in the

integer and the last octet RK  is the least significant.

The initiator sends P, G, and X in SecNega  of FLOW1-3WE to the responder. Upon receiving P, G, and X,

the responder computes its public key y  and the secret shared key z . The responder converts its public key

y  to octet string Y  and sends it to the initiator in SecNegb  of FLOW2-3WE. Upon receiving Y, the

initiator computes the secret shared key z . Both the initiator and responder convert the secret shared key z
to octet string Z.
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The low order 256 bits of Z shared by the initiator and responder is the Initial Key Exchange Key Z  used
to encrypt ConfPara and ConfParb.

Let C represent the “Confidential Data” part (i.e., octet x.4 and higher) of the “Confidential Section” of the

SSIE (see Section 6.2.4). To encrypt C with the secret shared key Z , a Zconcat is first built from Z as
follows: Z − C , where Zconcat is the concatenation of Z−C, Z−C, etc. such that its total length

is greater than or equal to the length of C. Each Z−C (where Z−C) is computed as follows:

Z A B i R Zi A= SHA( Z KeyFill ShaFill, , , , , , , )

First, the shared key Z is appended KeyFill to the next 512-bit boundary, using the pad with length
technique defined for SHA-1 (Secure Hash Algorithm) in [8]. Then, the filled shared key is concatenated
with (immediately followed by) the source’s distinguished name A, concatenated with (immediately
followed by) the destination’s distinguished name B, concatenated with (immediately followed by) a one-
octet (8-bit) counter i , concatenated with (immediately followed by) a random number RA generated by the

source, and concatenated with (immediately followed by) the shared key Z again. A trailing pad (i.e.,
ShaFill) with length to the next 512-bit boundary for the entire message is added by SHA-1 itself. Then, the
20-byte SHA-1 message digest is calculated (as defined in [8]) and the result is Z−C.

Then, Zmask is formed by removing the rightmost C  octets of Zconcat (where  Zconcat  is

the length of Zconcat in octets and C  is the length of C in octets), so that Zmask has the same length as C.

The encrypted C is obtained by xoring Zmask with C. That is, EC Zmask C= ⊕  . Then, the sender replaces
the entire octet string of the “Confidential Data” in the SSIE with EC. To recover C, the encrypted C (i.e.,
EC) is xored with Zmask. That is, C Zmask EC= ⊕  .

6.8.5. Session Key Exchange using MD5

The hash function to be used in SKE for a connection may be negotiated at the time the connection is
established. Here the MD5 method of RFC-1321 [12] is defined as one option for use with SKE. The shared
master key, Km,AB, is not constrained by this scheme to any particular size.

The “Mask”  for xoring with the session key is obtained using MD5 as follows:

HalfMask1= MD5(K ,KeyFill, A,KN ,c1,K , MD5Fill)m,AB A m,AB

HalfMask2 = MD5(K ,KeyFill, A,KN ,c2,K , MD5Fill)m,AB A m,AB  if session key > 128 bits

HalfMask2 = 0  if session key < 128 bits

Mask = (HalfMask2, HalfMask1)

Where  the constants c1 = 0000 0000 hex, and c2 = 5555 AAAA hex for the initiator, and
where the constants c1 = 00FF FF00 hex, and c2 = 6666 CCCC hex for the responder

Note: for simplex connections (e.g., pt-mpt) the constants associated with the initiator are used.

The first half mask is computed as follows: The KeyFill is appended to the shared master key to the next
512-bit boundary, using the pad with length technique defined for MD5 in RFC-1321 [12].  Then, the filled
master key is concatenated with (immediately followed by) A, concatenated with (immediately followed by)
KNA, concatenated with (immediately followed by) the constant c1, and concatenated with (immediately
followed by) the original variable length master key again.  A trailing pad (i.e., MD5Fill) with length to the
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next 512-bit boundary for the entire message is added by MD5 itself. Then, the 16-byte MD5 message
digest is calculated (as defined in RFC-1321 [12]), and the result is the HalfMask1.

The length of the session key being encrypted determines the computation of the second half mask.  If it is
greater than 128 bits, the second half mask is computed in a similar fashion to the first half mask, except
that the constant c2 is used in place of c1.  If the session key is 128 bits or less, the second half mask is
simply set to zero.

The Mask is then obtained by concatenating the two HalfMasks. The Mask length is 32 bytes, which is
equal to the length of the “encrypted session key” field of the SKE OAM cell.  To obtain the encrypted
session key, the session key is first prepended with zeros (with ZeroPad) so that its total length is 256 bits
(i.e., 32 bytes). If the session key length is already 256 bits, no padding is required. Then, the padded
session key is xored with the Mask to obtain the 32-byte encrypted session key.

Enc (K )= (ZeroPad,K ) MaskK s,AB s,ABm,AB

To recover the session key, Ks,AB, from the encrypted session key, Enc (K )K s,ABm,AB
, the encrypted session

key is first xored with the Mask and then the prepended ZeroPad is removed.

6.8.6. Session Key Exchange using SHA-1 and RIPEMD-160

The hash function, H to be used in SKE for a connection may be negotiated at the time the connection is
established. Here the SHA-1 [8] and the RIPEMD-160 [18] methods are defined as two options for use with
SKE. The shared master key, Km,AB, is not constrained by this scheme to any particular size.

The “Mask”  for xoring with the session key is obtained using H as follows:

HalfMask1= trunc (H(K , KeyFill, A, KN ,c1, K , H_ Fill))128 m,AB A m,AB

HalfMask2 = trunc (H(K ,KeyFill, A,KN ,c2, K , H_ Fill))128 m,AB A m,AB  if session key > 128 bits

HalfMask2 = 0  if session key < 128 bits

Mask = (HalfMask2, HalfMask1)

Where  the constants c1 = 0000 0000 hex, and c2 = 5555 AAAA hex for the initiator, and
where the constants c1 = 00FF FF00 hex, and c2 = 6666 CCCC hex for the responder.

The first half mask is computed as follows: The KeyFill is appended to the shared master key to the next
512-bit boundary, using the pad with length technique defined for SHA-1 in [8] or RIPEMD-160 in [18].
Then, the filled master key is concatenated with (immediately followed by) A, concatenated with
(immediately followed by) KNA, concatenated with (immediately followed by) the constant c1, and
concatenated with (immediately followed by) the original variable length master key again.  H itself adds a
trailing pad (i.e., H_Fill) to the next 512-bit boundary for the entire message. Then, the 20-byte H message
digest is calculated (as defined in [8] or [18]).  The H digest is then truncated to 128 bits by throwing away
the high order 32 bits, and the result is the HalfMask1.

The length of the session key being encrypted determines the computation of the second half mask.  If it is
greater than 128 bits, the second half mask is computed in a similar fashion to the first half mask, except
that the constant c2 is used in place of c1.  If the session key is 128 bits or less, the second half mask is
simply set to zero.
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The Mask is then obtained by concatenating the two HalfMasks. The Mask length is 32 bytes, which is
equal to the length of the “encrypted session key” field of the SKE OAM cell.  To obtain the encrypted
session key, the session key is first prepended with zeros (with ZeroPad) so that its total length is 256 bits
(i.e., 32 bytes). If the session key length is already 256 bits, no padding is required. Then, the padded
session key is xored with the Mask to obtain the 32-byte encrypted session key.

Enc (K )= (ZeroPad,K ) MaskK s,AB s,ABm,AB

To recover the session key, Ks,AB, from the encrypted session key, Enc (K )K s,ABm,AB
, the encrypted session

key is first xored with the Mask and then the prepended ZeroPad is removed.

6.9. Asymmetric Authentication and Key Exchange Using
Elliptic Curve Cryptosystems

This section describes the method of performing authentication and key exchange using the elliptic curve
cryptosystem. This section is self-contained, that is, all references indicated in this section (Section 6.9) can
be found in Section 6.9.6.

Many public-key cryptographic systems are based on exponentiation operations in large finite mathematical
groups. The cryptographic strength of these systems is derived from the believed computational
intractability of computing logarithms in these groups. The most commonly seen groups are the

multiplicative group of Zp (the integers modulo a prime p) and F2m (characteristic 2 finite fields).   The
primary advantages of these groups have been their rich theory, easily understood structure, and
straightforward implementation. However, they are not the only groups that have the requisite properties. In
particular the mathematical structures known as elliptic curves have the requisite mathematical properties,
have a rich theory, and are especially amenable to efficient implementation in hardware or software.

The algebraic system defined on the points of an elliptic curve provides an alternate means to implement the
ElGamal and ElGamal-like public key encryption and signature protocols. These protocols are described in
the literature in the algebraic system Zp, integers modulo p, where p is a prime. For example, the Digital
Signature Algorithm (DSA) defined in ANSI X9.30-1-1995 [ANS 95] and in NIST’s FIPS 186-1993
[P1363; NIS 93], is an ElGamal-like signature scheme defined over Zp. Precisely the same protocol for
signing can be defined over the points on an elliptic curve.

Elliptic curves as algebraic/geometric entities have been studied extensively for the past 150 years, and
from these studies has emerged a rich and deep theory. Elliptic curve systems as applied to ElGamal
protocols were first proposed in 1985 independently by Neal Koblitz from the University of Washington,
and Victor Miller, who was then at IBM, Yorktown Heights.

The security of the cryptosystems using elliptic curves hinges on the intractability of the discrete logarithm
problem in the algebraic system. Since 1985, this problem has received attention from leading
mathematicians around the world. Unlike the case of the discrete logarithm problem in finite fields, or the
problem of factoring integers, there is no subexponential-time algorithm known for the elliptic curve
discrete logarithm problem. The best algorithm known to date takes fully exponential time.

The primary advantage of elliptic curve systems is their high cryptographic strength relative to the key size.
The attractiveness of the elliptic curve cryptosystems will increase relative to other public-key
cryptosystems, as computing power improvements force an increase in the key size. The significantly
shorter key size results in significantly shorter certificates and system parameters. These advantages
manifest themselves in many ways, including:

• Storage efficiencies,
• Bandwidth savings, and
• Computational efficiencies.
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 The computational efficiencies lead in turn to:

• Higher speeds,
• Lower power consumption, and
• Code size reductions.

The computational efficiencies available with the use of these implementations, combined with the
efficiencies of elliptic curves in general, are particularly beneficial in applications where bandwidth,
processing capacity, power availability, or storage are constrained. Examples are wireless communications,
handhold computing, broadcast, and smart card applications.

Associated with any finite field Fq there are on the order of q different elliptic curves that can be formed and
used for the cryptosystems. Thus, for a fixed finite field with q elements and with q large, there are many
choices for the elliptic curve group. Since each elliptic curve operation requires a number of more basic
operations in the underlying finite field Fq, a finite field may be selected with a very efficient software or
hardware implementation, and there remain an enormous number of choices for the cryptosystem.

6.9.1. Definitions, Abbreviations, Symbols, and Notation

6.9.1.1. Definitions And Abbreviations

addition rule An addition rule describes the addition of two elliptic curve points P1

and P2 to produce a third elliptic curve point P3.

basis A representation of the elements of the finite field F2m. Two special
kinds of basis are optimal normal basis and polynomial basis.

bit string A bit string is an ordered sequence of 0s and 1s.

characteristic 2 finite field A finite field containing 2m elements, where m ≥ 1 is an integer.

cryptographic hash A (mathematical) function  that maps values from a large (possibly
function very large) domain into a smaller range. It satisfies the following

properties:

1. it is computationally infeasible to find any input which maps to any
pre-specified output;

2. it is computationally infeasible to find any two distinct inputs that
map to the same output.

ECDSA-like Elliptic curve analog of the NIST Digital Signature Algorithm (DSA).

EC Elliptic Curve.

elliptic curve An elliptic curve is a set of points specified by two parameters a and b,
which are elements of a field Fq. The elliptic curve is said to be defined
over Fq, and Fq is sometimes called the underlying field.

If q is an odd prime p, p > 3, (so the field is Fp), then the Weierstrass
equation defining the curve is of the form    y2 = x3 + ax + b,   where

((4a3 + 27b2) mod p) ≠ 0. If q is a power of 2   (so the field is F2m),
then the Weierstrass equation defining the curve is of the form
y2 + xy  =  x3 + ax2 + b, where b ≠ 0.

elliptic curve key pair Given particular elliptic curve parameters, an elliptic curve key pair
consists of an elliptic curve private key and the corresponding elliptic
curve public key.
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elliptic curve private key Given particular elliptic curve parameters, an elliptic curve private key
consists of a statistically unique and unpredictable integer d in the
interval  [2, n - 2].

elliptic curve public key Given particular elliptic curve parameters and an elliptic curve private
key d, the corresponding elliptic curve public key consists of the elliptic
curve point Q = dP.

elliptic curve parameters These parameters specify an underlying field Fq, the type of basis used
to represent the elements of Fq, the equation of an elliptic curve over
Fq, an elliptic curve point P of prime order, and the order n of P.

elliptic curve point If E is an elliptic curve defined over a field Fq, then an elliptic curve
point P is either (i) a pair of field elements (xP, yP) (where xP, yP ∈ Fq)
such that the values x = xP and y = yP satisfy the equation defining E, or
(ii) a special point O called the point at infinity.

nonsupersingular If an elliptic curve is not supersingular, it is called nonsupersingular.
Only nonsupersingular elliptic curves are considered in this
specification.

octet An octet is a bit string of length 8. A hexadecimal string of length 2
represents an octet. The first hexadecimal digit represents the four
leftmost bits of the octet, and the second hexadecimal digit represents
the four rightmost bits of the octet. For example, 9D represents the bit
string 10011101. An octet also represents an integer in the interval
[0,255]. For example, 9D represents the integer 157.

octet string An octet string is an ordered sequence of octets.

order of a point The order of a point P is the smallest positive integer n such that
nP = O (the point at infinity).

order of a curve The order of an elliptic curve E defined over the field Fq is the number
of points on the elliptic curve E, including O, and is denoted by #E(Fq).

owner The entity whose identity is associated with a private/public key pair.

point compression Let P be a point (xP, yP) on an elliptic curve E defined over a field Fq.
Point compression allows the point P to be represented using xP and a

single additional bit ~yP  derived from xP and yP. If q is a prime number,

then  ~yP  is the rightmost bit of yP. If q is a power of 2, then ~yP  is 0 if

xP = 0; if xP ≠ 0, then ~yP  is equal to the rightmost bit of the field

element   yP • xP
-1.

point compression octet The rightmost bit of PC shall be equal to the value of ~yP . The second

(PC) rightmost bit is 1 if this indicates the point at infinity and is zero
otherwise. The remaining bits of the octet shall be set to zero.

prime finite field A finite field containing p elements, where p is an odd prime number.

scalar multiplication If k is a positive integer, then kP denotes the point obtained by adding
together k copies of the point P. The process of computing kP from P
and k is called scalar multiplication.

The Secure Hash Algorithm, SHA-1 implements a hash function which maps messages of length
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Revision 1   (SHA-1)  less than 264 bits to hash values of length exactly 160 bits.

supersingular An elliptic curve E defined over Fp is supersingular if the order of E is

p + 1. An elliptic curve defined over F2m is supersingular if its defining
equation is of the form:

         y2 + cy = x3 + ax + b          where:      a,b,c ∈ F2m and c ≠ 0.

The use of such a curve is prohibited by this specification.

verifier The entity that verifies the authenticity of a digital signature.

x-coordinate The x-coordinate of an elliptic curve point,  P = (xP, yP), is xP.

y-coordinate The y-coordinate of an elliptic curve point,  P = (xP, yP), is yP.

6.9.1.2. Symbols And Notation

a Ceiling: the smallest integer ≥ a. For example, 5 = 5 and 5.3 = 6.

a Floor: the largest integer ≤ a. For example, 5 = 5 and 5.3 = 5.

[a,b] The interval of integers between and including a and b.

X ⊕ Y Bitwise exclusive-or of two bit strings X and Y of the same bit length.

X||Y Concatenation of two strings X and Y. X and Y are either both bit strings, or both octet
strings.

||X|| Length in octets of the octet string X.

log2 x The logarithmic function to the base 2.

a mod n The unique remainder r, 0 ≤ r ≤ n - 1, when integer a is divided by n. For example, 23
mod 7 = 2 since 23 = 7 • 3 + 2.

Zp or Fp The finite field containing p elements, where p is prime.

F2m The finite field containing 2m elements.

m The degree of the finite field F2m.

Fq The finite field containing q elements. For this specification, q will either be a prime
number (p) or a power of 2 (2m).

t The length of a field element in bits; t = log2 q. In particular, if q = 2m, then a field

element in F2m can be represented as a bit string of bit length t = m.

l The length of a field element in octets; l = t / 8.

E An elliptic curve.

P A base point (xP, yP) on an elliptic curve.

O A special point on an elliptic curve, called the point at infinity. This is the additive
identity of the elliptic curve group

n The order of the point P. For this specification, n is a prime number.

h The maximum length, in bits, of an integer in the interval [0, n - 1]; h = log2 n .

f The maximum length, in octets, of an integer in the interval [0, n - 1];  f = h / 8.

E (Fq) The set of all points on an elliptic curve E defined over Fq and including the point at
infinity O.
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#E(Fq) If E is defined over Fq, then #E(Fq) denotes the number of points on the curve. #E(Fq) is
called the order of the curve E.

~yP The representation of the y-coordinate of a point P when point compression is used.

M Message to be signed.

M’ Message as received.

mod Modulo.

mod n Arithmetic modulo n.

p An odd prime number.

Q EC public key.

6.9.2. Mathematical Conventions

6.9.2.1.   Finite Field Arithmetic

This section describes the representations that shall be used for the elements of the underlying finite
field Fq.

6.9.2.1.1.   The Finite Field Fp

Let p be an odd prime, p > 3. The finite field Fp is comprised of the set of integers {0, 1, 2, ..., p - 1}.

6.9.2.1.2.   The Finite Field F2m

The finite field F2m is comprised of all bit-strings of bit length m.

6.9.2.1.3.   Polynomial Basis

Let f(x)  = xm + fm-1x
m-1 + ... + f2x

2 + f1x + f0, fi ∈ F2, be an irreducible polynomial of degree m over F2, i.e.,

f(x) cannot be factored  into two polynomials over F2, each of degree less than m.  The finite field F2m is
comprised of all polynomials over F2 of degree less than m:

F2m = {am-1x
m-1 + ... + a2x

2 + a1x + a0: ai ∈ {0,1}},

i.e., {1, x, x2,…, xm-1} is the polynomial basis of F2m.. The field element (am-1x
m-1 + ... + a2x

2 + a1x + a0) is
usually denoted by the binary string (am-1...a1a0) of length m, so that

F2m = {(am-1...a1a0): ai ∈ {0,1}}.  

Thus the elements of F2m can be represented by the set of all binary strings of length m.

Field elements are added and multiplied as follows:

• Field addition: (am-1...a1a0) + (bm-1...b1b0) = (cm-1...c1c0) where ci = ai + bi in the field F
2
.

 That is, field addition is performed componentwise.

• Field multiplication: (am-1...a1a0) ´  (bm-1...b1b0) = (rm-1...r1r0), where the polynomial
(rm-1x

m-1 + ... + r1x + r0) is the remainder when the polynomial
(am-1x

m-1 + ... + a2x
2 + a1x + a0) ´ (bm-1x

m-1 + ... + b2x
2 + b1x + b0) is divided by f(x) over F2.
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This method of representing F2m is called a polynomial basis representation.

For performance  reasons we choose the irreducible polynomial f(x) to have as few nonzero terms as
possible (as f(x) is not divisible by x and has an odd number of terms, it has at least three terms). If, for a
fixed m, there are two polynomials with the same number of terms, we choose the one for which f(2) is
minimum (here f(2) is evaluated as a polynomial over the integers). For all field sizes proposed in this
specification f(x) will be a trinomial, i.e., of the form  xm + xk + 1 or a pentomial, i.e., of the form xm + xk +
xj+ xi + 1.

6.9.2.1.4.  Field Sizes and Conversion Between Different  Bases

The following field sizes are stipulated in order to enhance interoperability for F2m:

m = 113, 163, 191, 239, 359, 431

For conversion between two (polynomial) bases B1 and B2 for the field over F
2
 we refer to Section 6.9.9.1.3.

For Fp, the prime p shall be in the range of 2113 to 2256.

6.9.2.1.5.  Curve Parameters and Identifiers

Curve parameters for the field sizes and curve types recommended herein follow. Each curve should be
assigned a curve identifier (CID) in order to simplify its use and interoperability. The CID should be
represented by an octet. Example curve parameters have been taken from X9.62 whenever possible. The
assigning of CIDs does not preclude the use of other curves. The curves below can be used together with
user defined algorithms (e.g., for key exchange, see Section 6.2.3.5).

Random curves over F2
m

m = 113-bits
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   0   0   1
The field F2

113 is generated by the irreducible trinomial:
f  = 020000 00000000 00000000 00000201

The curve E:  y2 + xy = x3 + ax2 + b over F2
113

SEED = 106B2D4C 1DF4D696 E6768756 15175C93 B87B1BC3
a = 0040DC 7BDE0697 D611D0EA 04048409
b = 01F92F 62E93FF8 760B6C1A F67E15CE

Base point G (with point compression):
0301F5BA CF3501B7 D83AC956 9E6B9613

Order of G:
n = 010000 00000000 00D0DD64 9933E2D9
h = 02

m = 163-bits (from ANSI X9.62)
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   0   1   0
The field F2

163 is generated by the irreducible pentanomial:
f  = 08 00000000 00000000 00000000 00000000 00000107

The curve E:  y2 + xy = x3 + ax2 + b over F2
163

SEED = D2C0FB15 760860DE F1EEF4D6 96E67687 56151754
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a = 07 2546B543 5234A422 E0789675 F432C894 35DE5242
b = 00 C9517D06 D5240D3C FF38C74B 20B6CD4D 6F9DD4D9

Base point G (with point compression):
0307 AF699895 46103D79 329FCC3D 74880F33 BBE803CB

Order of G:
n = 04 00000000 00000000 0001E60F C8821CC7 4DAEAFC1
h = 02

m = 191-bits (from ANSI X9.62)
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   0   1   1
The field F2

191 is generated by the irreducible trinomial:
f = 80000000 00000000 00000000 00000000 00000000 00000201

The curve E:  y2 + xy = x3 + ax2 + b over F2
191

SEED = 4E13CA54 2744D696 E6768756 1517552F 279A8C84
a = 2866537B 67675263 6A68F565 54E12640 276B649E F7526267
b = 2E45EF57 1F00786F 67B0081B 9495A3D9 5462F5DE 0AA185EC

Base point G (with point compression):
02 36B3DAF8 A23206F9 C4F299D7 B21A9C36 9137F2C8 4AE1AA0D

Order of G:
n = 40000000 00000000 00000000 04A20E90 C39067C8 93BBB9A5
h = 02

m = 239-bits (from ANSI X9.62)
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   1   0   0
The field F2

239 is generated by the irreducible trinomial:
f = 8000 00000000 00000000 00000000 00000000 00000000 00000010 00000001

The curve E:  y2 + xy = x3 + ax2 + b over F2
239

SEED = D34B9A4D 696E6768 75615175 CA71B920 BFEFB05D
a = 3201 0857077C 5431123A 46B80890 6756F543 423E8D27 87757812 5778AC76
b = 7904 08F2EEDA F392B012 EDEFB339 2F30F432 7C0CA3F3 1FC383C4 22AA8C16

Base point G (with point compression):
025792 7098FA93 2E7C0A96 D3FD5B70 6EF7E5F5 C156E16B 7E7C8603 8552E91D

Order of G:
n = 2000 00000000 00000000 00000000 000F4D42 FFE1492A 4993F1CA D666E447
h = 04

Random curves over Fp

p = 113-bits
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   1   0   1
The field Fp is generated by the prime:

p = 9263910021405187536998134712315669
The curve E:  y2 = x3 + ax + b over F113

SEED = 10D488F3 EB4B2AFD 9134D696 E6768756 151754A6
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r = 0018E5 8515A4E3 6A6DB07E C53D7491
a = 00FB5E B4B66007 70467852 25CE9DCA
b = 01BC31 341D57E6 FB75C850 0C38BD72

Base point G (with point compression):
0300FA46 F57A6313 20092F0D A8DD2E33

Order of G:
n = 01C8BE FBAE245F 039911DC ABDCC82D
h = 01

p = 163-bits
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   1   1   0
The field Fp is generated by the prime:

p = 7441570001851253078325059510076520610606604922267

The curve is E: y2 = x3 + ax + b over F163

SEED = 33855928 86AB4D69 6E676875 61517593 5F3CA3E1
r = 00 3FEA47B8 B292641C 57F9BF84 BAECDE8B B3ADCE30
a = 04 3182D283 FCE38807 30C9A2FD D3F60165 29A166AF
b = 02 0C61E945 9E53D887 1BCAADC2 DFC8AD52 25228035

Base point G (with point compression):
0300 17E70122 77E1B4E4 3F7BF746 57E8BE08 BACA175B

Order of G:
n = 05 177B8A2A 0FD6A4FF 55CCA7B8 A1E21C88 BD53B2C1
h = 01

p = 192-bits (from ANSI X9.62)
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   0   1   1   1
The field Fp is generated by the prime:

p = 6277101735386680763835789423207666416083908700390324961279
The curve E:  y2 = x3 + ax + b over F192

SEED = 3045AE6F C8422F64 ED579528 D38120EA E12196D5
r = 3099D2BB BFCB2538 542DCD5F B078B6EF 5F3D6FE2 C745DE65
a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFC
b = 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

Base point G (with point compression):
03 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

Order of G:
n = FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831
h = 01

p = 239-bits  (from ANSI X9.62)
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   1   0   0   0
The field Fp is generated by the prime:

p = 883423532389192164791648750360308885314476597252960362 792450860609699839



ATM Security Specification, Version 1.0 af-sec-0100.001

ATM Forum Technical Committee Page 175

The curve E:  y2 = x3 + ax + b over F239

SEED = E43BB460 F0B80CC0 C0B07579 8E948060 F8321B7D
r = 28B8 5EC1ECC1 9EFE769E B741A6D1 BA29476A A5A8F261 0957D6EF E78D3783
a = 7FFF FFFFFFFF FFFFFFFF FFFF7FFF FFFFFFFF 80000000 00007FFF FFFFFFFC
b = 6B01 6C3BDCF1 8941D0D6 54921475 CA71A9DB 2FB27D1D 37796185 C2942C0A

Base point G (with point compression):
020FFA 963CDCA8 816CCC33 B8642BED F905C3D3 58573D3F 27FBBD3B 3CB9AAAF

Order of G:
n = 7FFF FFFFFFFF FFFFFFFF FFFF7FFF FF9E5E9A 9F5D9071 FBD15226 88909D0B
h =   01

Koblitz curves over F2
m

m = 163-bits
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   1   0   0   1
The field F2

163 is generated by the irreducible pentanomial:
f = 08 00000000 00000000 00000000 00000000 000000C9

The curve E:  y2 + xy = x3 + ax2 + b over F2
163

SEED = NO
a = 00 00000000 00000000 00000000 00000000 00000001
b = 00 00000000 00000000 00000000 00000000 00000001

Base point G (with point compression):
0302 FE13C053 7BBC11AC AA07D793 DE4E6D5E 5C94EEE8

Order of G:
n = 04 00000000 00000000 00020108 A2E0CC0D 99F8A5EF
h = 02

m = 239-bits
CID Octet = 8   7   6   5   4   3   2   1

0   0   0   0   1   0   1   0
The field F2

239 is generated by the irreducible trinomial:
f = 8000 00000000 00000000 40000000 00000000 00000000 00000000 00000001

The curve E:  y2 + xy = x3 + ax2 + b over F2
239

SEED = NO
a = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
b = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

Base point G (with point compression):
0329A0 B6A887A9 83E97309 88A68727 A8B2D126 C44CC2CC 7B2A6555 193035DC

Order of G:
n = 2000 00000000 00000000 00000000 005A79FE C67CB6E9 1F1C1DA8 00E478A5
h = 04
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6.9.2.2.   Data Representation

The data types in this specification are octet strings, integers, field elements, and points.

Figure 49 provides a cross-reference for the sections defining conversions between data types that shall be
used in the algorithms specified in this specification. The number on a line is the section number where the
conversion technique is specified.

Field
Element

Octet
String

Integer

Point

6.9.2.4.3.16.9.2.4.3.2

6.9.2.3.1 6.9.2.3.2

6.9.2.3.3

6.9.2.2.1

6.9.2.2.2

Figure 49.  Data Types and Conversion Conventions.

6.9.2.2.1.  Integer-to-Octet-String Conversion

Input:  A nonnegative integer x, and the intended length k of the octet string satisfying:

28k > x.

Output:  An octet string M of length k octets.

1. Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.

2.  The octets of M shall satisfy:

x =
i

k

=
∑

1

28(k - i) Mi.

6.9.2.2.2.   Octet-String-to-Integer Conversion

Input:  An octet string M of length k octets.

Output:  An integer x.

1. Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.

2.  M shall be converted to an integer x satisfying:
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x = 
i

k

=
∑

1

28(k - i) Mi.

6.9.2.3.   Finite Field Element Representations

6.9.2.3.1.   Field-Element-to-Octet-String Conversion

Input:  An element α in the field Fq.

Output:  An octet string S of length l = t / 8 octets, where t = log2 q.

1. If q is an odd prime, then α must be an integer in the interval: [0, q - 1];
α shall be converted to an octet string of length l octets using the technique specified in
Section 6.9.2.2.1.

2. If q = 2m, then α must be a bit string of length m bits. Let s1,s2,…,sm be the bits of α from leftmost to
rightmost. Let S1,S2,…,Sl be the octets of S from leftmost to rightmost. The rightmost bit sm shall
become the rightmost bit of the last octet Sl, and so on through the leftmost bit s1, which shall become
the (8l - m + 1)th bit of the first octet S1. The leftmost (8l - m) bits of the first octet S1 shall be zero.

6.9.2.3.2.   Octet-String-to-Field-Element Conversion

Input:  An octet string S of length l octets, and an indication of the field Fq used.

Output:  An element α in Fq.

1. If q is an odd prime, then convert S to an integer α using the technique specified in Section 6.9.2.2.2.
It is an error if α does not lie in the interval [0, q - 1].

2. If q = 2m, then α shall be a bit string of length m bits. Let s1,s2,…,sm be the bits of α from leftmost to
rightmost. Let S1,S2,…,Sl be the octets of S from leftmost to rightmost. The rightmost bit of the last
octet Sl shall become the rightmost bit sm, and so on through the (8l - m + 1)th bit of the first octet S1,
which shall become the leftmost bit s1. The leftmost (8l - m) bits of the first octet S1 are not used.

6.9.2.3.3.   Field-Element-to-Integer Conversion

Input:  An element α in the field Fq.

Output:  An integer x.

1. If q is an odd prime then x = α (no conversion is required).

2. If q = 2m, then α must be a bit string of length m bits. Let s1,s2,…,sm be the bits of α from leftmost to
rightmost. α shall be converted to an integer x satisfying:

x = 
i

m

=
∑

1

2(m - i) si

6.9.2.4.   Elliptic Curve Parameters, Keys, and Point Representations

6.9.2.4.1.   Elliptic Curve Parameters

Elliptic curve parameters may either be common to several key pairs (common elliptic curve parameters) or
specific to one key pair (specific elliptic curve parameters). The elliptic curve parameters may be public;
the security of the system does not rely on these parameters being secret. Two cases are distinguished:

1. When the underlying field is Fp (p an odd prime), and
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2. When the underlying field is F2m.

6.9.2.4.1.1.   Elliptic Curve Parameters Over Fp

Elliptic curve parameters over Fp shall consist of the following parameters:

a. A field size q = p which defines the underlying finite field Fq, where p, p > 3, shall be a prime number;

b. Two field elements a and b in Fq which define the equation of the elliptic curve E: y2 = x3 + ax + b;

c. Two field elements xP and yP in Fq which define a point P = (xP,yP) on E of prime order; and

d. The order n of the point P. It must be the case that n > 2150.

6.9.2.4.1.2.   Elliptic Curve Parameter Validation Over Fp

The following conditions shall be used to verify the elliptic curve parameters over Fq. A user of the system
may alternately verify these conditions.

a. Verify that q = p is an odd prime number.

b. Verify that (4a3 + 27b2) ≠ 0 (mod p).

c. Verify that yP
2 ≡ xP

3 + axP + b (mod p).

d. Verify that n is prime and that n > 2150.

e. Verify that nP = O.

f. Verify that the MOV condition holds (Section 6.9.8.1).

If any of the above verifications fail, then reject the elliptic curve parameters.

6.9.2.4.1.3.   Elliptic Curve Parameters Over F2m

Elliptic curve parameters over F2m shall consist of the following parameters:

a. A field size q = 2m which defines the underlying finite field Fq;

b. Two field elements a and b in Fq which define the equation of the elliptic curve E;

c. Two field elements xP and yP in Fq which define a point P = (xP,yP) on E of prime order; and

d. The order n of the point P. It must be the case that n > 2150.

6.9.2.4.1.4.   Elliptic Curve Parameter Validation Over F2m

The following conditions may be used to verify the elliptic curve parameters over F2m:

a. Verify that q = 2m for some m.

b. Verify that b ≠ 0.

c. Verify that yP
2 + xPyP = xP

3 + axP
2 + b in F2m

d. Verify that n is prime and that n > 2150.

e. Verify that nP = O.

f. Verify that the MOV condition holds (Section 6.9.8.1).

If any of the above verifications fail, then reject the elliptic curve parameters.

6.9.2.4.2.   Key Generation

Given particular elliptic curve parameters, an elliptic curve key pair shall be generated by performing the
following operations:

1. Select a statistically unique and unpredictable integer d in the interval [2, n - 2].
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It is acceptable to use a random or pseudorandom number. If a pseudorandom number is used, it shall
be generated using the procedure of ANSI X9.30, Part 1 [ANS95], Appendix B.

2. Compute the point Q = (xQ,yQ) = dP.

3. The key pair is (Q,d), where Q is the public key, and d is the private key.

The key and algorithm details are conveyed by the Security Services Information Element as described in
Section 6.2.3.5.

6.9.2.4.3.  Representing an Elliptic Curve Point

A finite point on E is specified by two elements x and y in Fq satisfying the defining equation for E.  These
are called the affine coordinates for the point. The point at infinity O has no affine coordinates. For
purposes of internal computation, it is most convenient to represent O by a pair of coordinates (x,y) not on
E. In the characteristic 2 case the simplest choice is O=(0,0). For q=p, one chooses O=(0,0) unless b=0 in
which case O=(0,1).

An elliptic curve point P (which is not the point at infinity O) is represented by two field elements, the x-
coordinate of P and the y-coordinate of P: P = (xP,yP). The point can be represented compactly by storing
only the x-coordinate xP and a certain bit ˜ y P  derived from the x-coordinate xP and the y-coordinate yP.
To enhance interoperability we mandate that implementations externally represent elliptic curve points in
the compressed form as described in Section 6.9.1 (Definitions, Abbreviations, Symbols, and Notation).

6.9.2.4.3.1.  Point-to-Octet-String conversion

Input: An elliptic curve point (x1, y1).

Output: An octet string PO, of length l + 1 octets.

1. Convert the field element x1 to an octet string X1 (see Section 6.9.2.3.1).

2. Compute the bit ~y1  (see Section 6.9.1).

3. Assign the single octet PC the value 00 if ~y1 is 0, or the value 01 if ~y1 is 1.

4. The result is the octet string PO = PC||X1.

6.9.2.4.3.2.   Octet-String-to-Point conversion

Input: An octet string PO.

Output: An elliptic curve point (x1, y1).

1. Verify that the leftmost octet of PO is 00 or 01. Parse PO as follows: PO = PC||X1 where PC is a single

octet, and X1 is an octet string of length l octets. Set the bit ~y1 to be equal to 0 if PC = 00, or 1 if PC =

01 . It is an error if PO is not l + 1 octets in length.

2. Convert X1 to a field element x1 (see Section 6.9.2.3.2).

3. Convert (x1, 
~y1 ) to an elliptic curve point (x1, y1) (see Section 6.9.1).

4. The result is (x1, y1).
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6.9.3. The Elliptic Curve Digital Signature Algorithm (ECDSA-like)

6.9.3.1.   Signature Generation

This section describes the ECDSA-like signature generation process. This signature is suggested for
standardization in ISO/IEC JTC1. It is similar to the DSA scheme and uses also some ideas from [P1363;
AMO 91].

The signature generation process consists of three steps: message digesting, elliptic curve computations, and
modular computations.

The input to the signature process is:

• The message, M, of arbitrary length, which is represented by a bit string.

• Elliptic curve parameters q, a, b, P=(xP, yP), and n.
• An elliptic curve private key d.

To sign a message M, A should do the following.

6.9.3.1.1.   Message Digesting

Compute the hash value e = H(M) using the hash function SHA-1 per ANSI X9.30-199X, Part 2[ANS93].

e is represented as an integer of length 160 bits.

6.9.3.1.2.   Elliptic Curve Computations

1. Select a statistically unique and unpredictable integer k in the interval [2, n - 2].

2. Compute the elliptic curve point (x1, y1)  = kP.

3. Convert the field element x1 to an integer x1 , as described in Section 6.9.2.3.3.

4. Set r = x1  mod n.

5. If r = 0 then go to step 1.

6.9.3.1.3.   Modular Computations

1. Compute   s = (kr -e) d -1  mod n  in the case of ECDSA-like.

2. If s = 0 then go to Step 1 of Section 6.9.3.1.2.

6.9.3.1.4.   The Signature

The output from the signature generation process shall be the signature for M, which is represented as the
two integers, r and s.

Note: If k is chosen correctly (see Section 6.9.3.1.2, item 1), the probability that either r = 0 or s = 0 is
negligibly small.

6.9.3.2.   Signature Verification

This section describes the ECDSA-like signature verification process.

The signature verification process consists of three steps: message digesting, elliptic curve computations,
and signature checking.

The input to the signature verification process is:
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• The received message, M’, represented as a bit string.

• The received signature for M, represented as the two integers, r’ and s’.

• Elliptic curve parameters q, a, b, P=(xP, yP), and n.

• An elliptic curve public key, Q.

To verify A’s signature on message M, B should do the following.

6.9.3.2.1.   Message Digesting

Compute the hash value e = H(M’) using the hash function SHA-1 per ANSI X9.30-199X, Part 2.
e is represented as an integer of length 160 bits.

6.9.3.2.2. Elliptic Curve Computations for ECDSA-like

1. If  r’  is not an integer in the interval [1, n -1], then reject the signature.

2. If  s’  is not an integer in the interval [1, n -1], then reject the signature.

3. Compute w = (r’)-1 mod n.

4. Compute u1  = sw mod n and u2 = ew mod n.

5. Compute the elliptic curve point (x1, y1)  = u2P + u1Q.

6.9.3.2.3. Signature Checking

1. Convert the field element x1 to an integer x1 , as described in Section 6.9.2.3.3.

2. Compute v = x1  mod n.

3. If r’ = v, then the signature is verified and the verifier can have a high level of confidence that the
received message was sent by the party holding the secret key d corresponding to Q.

If r’ does not equal v, then the message may have been modified, the message may have been incorrectly
signed by the signatory, or the message may have been signed by an impostor.  The message should be
considered invalid.

6.9.4. ECDSA-Like Asymmetric Authentication

An asymmetric authentication scheme based on elliptic curves can be derived from the signature scheme
presented in Section 6.9.3 using the principle of “challenge-and-response.”

6.9.4.1.   Challenge

This section describes the challenge process.

B chooses at random a challenge integer c, where 0 < c < n, and sends it to A.

6.9.4.2.   Response Generation

This section describes the response generation process.

The response generation process consists of two steps: elliptic curve computations and modular
computations.

The input to the response process is:

• The challenge c.
• Elliptic curve parameters.
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• An elliptic curve private key d.

To generate a response to B’s challenge, A should do the following.

6.9.4.2.1.   Elliptic Curve Computations

1. Choose a statistically unique and unpredictable integer k in the interval [2, n - 2].

2.  Compute the curve point R = (x1,y1) := kP.
3.  Convert the field element x1 to the integerx1  as described in Section 6.9.2.3.3

4.  Set r = x1  mod n.

5.  If r = 0, go to step 1.

6.9.4.2.2.   Modular Computations

1.  Compute  s := (kr - c)d -1  mod n  in the case of ECDSA-like.
2.  If s = 0 then go to Step 1 of  6.9.4.2.1.

6.9.4.2.3.   The response

The response (r,s) shall be sent to B.

6.9.4.3.   Response verification

This section describes the response verification process.

There are two steps to the response verification process: elliptic curve computations and  response
checking.

The input to the response verification process is:
• The challenge c.

• Elliptic curve parameters.

• An elliptic curve public key Q.

• The response (r,s).

To verify A’s response, B should do the following.

6.9.4.3.1.  Elliptic Curve Computations for ECDSA-like

1. If  r’  is not an integer in the interval [1, n -1], then reject the response.

2. If  s’  is not an integer in the interval [1, n -1], then reject the response.

3. Compute w = (r’)-1 mod n.

4. Compute u1  = sw mod n and u2 = cw mod n.

5. Compute the elliptic curve point (x1, y1)  = u2P + u1Q.

6.9.4.3.2.   Response Checking

1. Convert the field element x1 to an integer x1 , as described in Section 6.9.2.3.3.

2. Compute v = x1  mod n.

3. If r’ = v, then the response is verified and the verifier can have a high level of confidence that the
response was sent by the party holding the secret key d corresponding to Q.
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6.9.5. Elliptic Curve Key Agreement Scheme—Diffie-Hellman Analogue
(ECKAS-DH)

This section describes the Elliptic Curve Key Agreement Scheme—Diffie-Hellman Analogue.

The input to the scheme is:

• Elliptic curve parameters.

However, it is not necessary that the users know the order n of the point P. The public and private keys of
the users are not involved in this protocol.

6.9.5.1.   Key Computations

To agree upon a common key, A and B do the following calculations:

1. A chooses a random integer a and determines the point aP. A sends aP to B.

2. B chooses a random integer b and determines the point bP. B sends bP to A.

3. A determines a(bP), B determines b(aP). Both points coincide and constitute the common key.
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6.9.7. Security Considerations  [informative]

This section is provided as initial guidance for implementers of this specification. This information should
be expected to change over time. Implementers should review the current state of the art at the time of
implementation.

This section summarizes the best attacks known on the elliptic curve discrete logarithm problem, which is
the basis for the security of elliptic curve systems. Estimates of security levels for elliptic curve parameters
of various sizes are provided.

Notation

E denotes an elliptic curve over the finite field Fq,  P ∈ E(Fq) is a point of order n, where n is a prime
number and n > 2150.

The Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is the following: given E, P and Q ∈ E, determine
the integer l, 0 ≤ l ≤ n-1, such that Q = lP, provided that such an integer exists.

The best algorithm known to date for ECDLP is the Pollard-ρ method [P1363; Pol 78] which takes about

π n / 2  steps. By a step here, we shall mean an elliptic curve addition. The Pollard-ρ can be parallelized

(see[P1363; OW 94]) so that if m processors are used then the expected number of steps by each processor
before a single discrete logarithm is obtained is ( π n / 2 ) / m.

The special classes of elliptic curves, called supersingular curves, have been prohibited in this specification
by the requirement of the MOV condition (see Section 6.9.8.1). This is because there is a method for
efficiently reducing the discrete logarithm problem in these curves to the discrete logarithm problem in a
finite field.

Software Attacks

We assume that a MIPS (Million Instructions Per Second) machine can perform 4x104 elliptic curve
additions per second. (This estimate is indeed conservative—an ASIC built for performing elliptic curve

operations over the field F2155 has a 40 MHz clock-rate and can perform roughly 40,000 elliptic operations
per second.) Then, the number of elliptic curve additions that can be performed by a 1 MIPS machine in
one year is

( ) ( ) .4 10 60 60 24 365 24 40↔ ? ↔ ↔ ↔ ∪

Table 23 shows, for various values of n, the computing power required to compute a single discrete

logarithm. As an example, if 10,000 computers each rated at 1,000 MIPS are available, and n ∪2150 , then
an elliptic curve discrete logarithm can be computed in 3,800 years.

Odlyzko [Odl 95] has estimated that if 0.1% of the world’s computing power were available for one year to
work on a collaborative effort to break some challenge cipher, then the computing power available would
be 108 MIPS years in 2004 and 1010 to 1011 MIPS years in 2014.
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Field size
(in bits)

Size of n
(in bits)

πn / 2 MIPS years

155 150 275 3.8 x 1010

158 153 277 1.1 x 1011

209 204 2102 5.0 x 1018

210 205 2103 7.1 x 1018

239 234 2117 1.6 x 1023

Table 23: Computing Power to Compute Elliptic Curve Logarithms with the Pollard-ρ Method.

To put the numbers in Table 23 into some perspective, Table 24 (due to Odlyzko [Odl 95]) shows the
computing power required to factor integers with current versions of the general number field sieve.

Size of n (in bits) MIPS years

512 3 x 104

768 2 x 108

1024 3 x 1011

1280 1 x 1014

1536 3 x 1016

2048 3 x 1020

Table 24: Computing Power Required to Factor Integers Using the General Number Field Sieve.

Hardware Attacks

A more promising attack (for well-funded attackers) on elliptic curve systems would be to build special-
purpose hardware for a parallel search. Van Oorschot and Wiener [P1363; OW 94] provide a detailed study

of such a possibility. They estimated that if n ∪ ∪10 236 120 , then a machine with m = 325,000 processors
that could be built for about $10 million would compute a single discrete logarithm in about 35 days.

It must be emphasized that these estimates were made for specific elliptic curve parameters having

n ∪ ∪10 236 120 . This specification mandates that the parameter n should satisfy

n > 2 10150 45∪ .

Discussion

It should be pointed out that for the software and hardware attacks described above, computation of a single
elliptic curve discrete logarithm has the effect of revealing a single user’s private key. The same effort must
be repeated in order to determine another user’s private key.

In [BDR 96], Blaze et al. report on the minimum key lengths required for secure symmetric-key encryption
schemes (such as DES and IDEA). Their report comes to the following conclusion:

To provide adequate protection against the most serious threats—well-funded
commercial enterprises or government intelligence agencies—keys used to protect data
today should be at least 75 bits long. To protect information adequately for the next 20
years in the face of expected advances in computing power, keys in newly deployed
systems should be at 90 bits long.
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Extrapolating these conclusions to the case of elliptic curves, we see that n should be at least 150 bits for
short-term security, and at least 180 bits for medium-term security. This extrapolation is justified by the
following considerations:

1. Exhaustive search through a k-bit symmetric-key cipher takes about the same time as the Pollard-ρ
algorithm applied to an elliptic curve having a 2k-bit parameter n.

2. Both exhaustive search with a symmetric-key cipher and the Pollard-ρ  algorithm can be parallelized
with a linear speedup.

3. A basic operation with elliptic curves (addition of two points) is computationally more expensive than a
basic operation in a symmetric-key cipher (encryption of one block).

4. In both symmetric-key ciphers and elliptic curve systems, a “break” has the same effect: it recovers a
single private key.

6.9.8. Required Number-Theoretic Algorithms  [normative]

6.9.8.1. The MOV and Frey-Rueck Condition

The reduction attack of Menezes, Okamoto, and Vanstone [MOV 93] reduces the discrete logarithm
problem in an elliptic curve (ECDLP) over Fq to the discrete logarithm in the finite field Fq B for some B ≥
1. Other work has treated problems that are closely related to ECDLP. Frey and Rueck [P1363; NR 93]
used a variant of the Tate pairing for abelian varieties over local fields to obtain an attack, which works on
projective irreducible nonsingular curves of genus g over finite fields.

The attack is only practical if B is small; this is not the case for most elliptic curves. The MOV and Frey-
Rueck condition ensures that an elliptic curve is not vulnerable to this reduction attack .

Before performing the algorithm, it is necessary to select an MOV and Frey-Rueck threshold. This is a
positive integer B such that taking discrete logarithms over Fq B is at least as difficult as taking elliptic
discrete logarithms over Fq. For this specification, a value B ≥ 20 is required. This algorithm is used in
elliptic curve parameter validation (Sections 6.9.2.4.1.2  and  6.9.2.4.1.4.) and elliptic curve parameter
generation (Section 6.9.8.3.2.).

Input: An MOV and Frey-Rueck threshold B, a prime-power q, and a prime n.

Output: The message “True” if the MOV and Frey-Rueck condition is satisfied for an elliptic curve over Fq

with a base point of order n; the message “False” otherwise.

1. Set t = 1.
2. For i from 1 to B do

2.1 Set t = t • q mod n.
2.2 If t = 1 then output “False” and stop.

3. Output “True.”

6.9.8.2. Primality

6.9.8.2.1.  A Probabilistic Primality Test

If n is a large positive integer, the following probabilistic algorithm (the Miller-Rabin test) [P1363; Knu 81,
p.379] will determine whether n is prime or composite, with arbitrary small probability of error.
This algorithm is used in elliptic curve parameter validation (Sections 6.9.2.4.1.2 and  6.9.2.4.1.4), elliptic
curve parameter generation (Section 6.9.8.3.2.), and in checking for near primality (Section 6.9.8.2.2.).

Input: A large odd integer n, a positive integer T.
Output: The message “prime” or “composite.”

1. Compute v and odd w such that n - 1 = 2vw.
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2. For j from 1 to T do
2.1 Choose random a in the interval [2, n - 1].
2.2 Set b = a w mod n.
2.3 If b = 1 or n - 1 go to Step 2.6.
2.4 For i from 1 to v - 1 do

2.4.1 Set b = b2 mod n.
2.4.2 If b = n - 1 go to Step 2.6.
2.4.3 If b = 1 output “composite” and stop.
2.4.4 Next i.

2.5. Output “composite” and stop.
2.6. Next j.

3. Output “prime.”

If the algorithm outputs “composite,” then n is composite. If the algorithm outputs “prime,” then n is
probably prime. The probability of a false “prime” conclusion is less than 2-2T. Thus the probability of error
can be made negligible by taking large enough T (say, T = 50).

6.9.8.2.2.  Checking for Near Primality

Given a trial division bound lmax , we say that the positive integer k is smooth if every prime divisor of k is

at most lmax . Given a large positive integer rmin, we say that u is nearly prime if u = kn for some prime n ≥
r min and some smooth integer k. The following algorithm checks for near primality. The algorithm is used in
elliptic curve parameter generation (Section 6.9.8.3.2.).

Input:  Positive integers u, lmax , and rmin.

Output:  If u is nearly prime, a prime r ≥ rmin and a smooth integer k such that: u = kn.

If u is not nearly prime, the message “not nearly prime.”

1. Set n = u, k = 1.
2. For l  from 2 to lmax  do

2.1 If l is composite then go to Step 2.3.

2.2 While (l  divides n)

2.2.1 Set n = n / l  and k = k. l .
2.2.2 If n < r min then output “not nearly prime” and stop.

2.3 Next l .
3. If n is prime (see Section 6.9.8.2.1) then output k and n and stop.
4. Output “not nearly prime.”

6.9.8.3. Elliptic Curve Algorithms

6.9.8.3.1.  Finding a Point of Large Prime Order

If the order #E(Fq) = u of an elliptic curve E is nearly prime, the following algorithm efficiently produces a
random point on E whose order is the large prime factor n of u = kn. The algorithm is used in elliptic curve
parameter generation (Section 6.9.8.3.2.).

Input: A prime n, a positive integer k not divisible by n, and an elliptic curve E over the field Fq with
#E(Fq) = u.

Output: If u = kn, a point P on E of order n. If not, the message “wrong order.”

1. Generate a random point G (not O) on E (see Section 6.9.9.2.1).
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2. Set P = kG.
3. If P = O then go to Step 1.
4. Set Q = nP.
5. If Q ≠ O then output “wrong order” and stop.
6. Output G.

6.9.8.3.2.  Selecting an Appropriate Curve and Point at Random

Given a field size q, a lower bound rmin for the point order, and trial division bound lmax , the following is

the procedure that shall be used for randomly choosing a curve and point.

1. If q = p, then check the primality of p using the technique defined in Section 6.9.8.2.1.

If q = 2m and an optimal normal basis is desired, then check that such a basis exists by consulting
Table 5.1 of [IXR 93, p. 100].

2. Randomly select parameters a, b ∈ Fq to define the elliptic curve equation.
• In the case that q is a prime, verify that  4a3 + 27b2 ≠ 0. (mod p).

• The curve equation is E: y2 = x3 + ax + b.
• In the case that q = 2m, verify that b ≠ 0. The curve equation is E: y2 + xy = x3 + ax2 + b.

3. Compute the order of the curve u = #E(Fq). (See Note 5 below.)

4. Test u for near primality using the technique defined in Section 6.9.8.2.2. If the result is “not nearly
prime,” then go to Step 2. Otherwise, u=kn where k is smooth and n is prime.

5. Check the MOV condition (see Section 6.9.8.1) with inputs B, q, and n. If the result is “False,” then go
to Step 2.

6. Find a point P on E of order n using the technique defined in Section 6.9.8.3.1.

7. Output the curve E and the point P.

Notes: 1. rmin shall be selected so that rmin > 2150. The security level can be increased by selecting a
larger rmin (e.g., rmin > 2160 or rmin > 2200).

2.  If q is prime then the order u of an elliptic curve E over Fq satisfies q + 1 - 2 q  ≤ u  ≤  q + 1

+ 2 q . Hence rmin must be ≤  q+1-2 q .

3.  If q = 2m then the order u of an elliptic curve E over Fq satisfies q + 1 - 2 q ≤ u  ≤  q + 1 +

2 q , and u is even. Hence rmin must be ≤  (q+1-2 q )/2.

4.  lmax  is typically a small integer (e.g.,lmax  = 255).

5. The order #E(Fq) can be computed by using Schoof’s algorithm [P1363; Sco 85]. Although
the basic algorithm is quite inefficient, several dramatic improvements and extensions of this
method have been discovered in recent years. Currently it is feasible to compute orders of

elliptic curves over Fp where p is as large as 10499, and orders of elliptic curves over F2m where
m is as large as 1300. Of more relevance is that the orders of elliptic curves over fields such as

F2155 can now be computed in less than 4 minutes on a workstation [P1363; LM 95].
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6.9.9. Other Number-theoretic algorithms [informative]

6.9.9.1. Polynomials Over a Finite Field

6.9.9.1.1.  GCDs over a Finite Field

If f(t) and g(t) ≠ 0 are two polynomials with coefficients in the field Fq, then there is a unique monic
polynomial d(t) of largest degree that divides both f(t) and g(t). The polynomial d(t) is called the greatest
common divisor or gcd of f(t) and g(t). The following algorithm computes the gcd of two polynomials.

Input:  A finite field Fq and two polynomials f(t), g(t) ≠ 0 over Fq.
Output:  d(t) = gcd(f(t) , g(t)).

1. Set a(t) = f(t), b(t) = g(t).
2. While b(t) ≠ 0

2.1. Set c(t) = the remainder when a(t) is divided by b(t).
2.2. Set a(t) =b(t).
2.3. Set b(t) = c(t).

3. Let α be the leading coefficient of a(t) and output α-1a(t).

6.9.9.1.2.  Finding a Root of an Irreducible Polynomial in F2m

If f(t) is an irreducible polynomial (mod 2) of degree m, then f(t) has m distinct roots in the field F2m.
A random root can be found efficiently using the following algorithm.

Input:  An irreducible polynomial of degree m over F2, and a field F2m.

Output:  A random root of f(t) in F2m.
1. Set g(t) = f(t).
2. While deg(g) > 1

2.1. Choose random u ∈ F2m.
2.2. Set c(t) = ut.
2.3. For i from 1 to m - 1 do

2.3.1. c(t) = (c(t)2 + ut) mod g(t).
2.4. Set h(t) = gcd(c(t), g(t)).
2.5. If h(t) is constant or deg(g) = deg(h) then go to step 2.1.
2.6. If 2 deg(h) > deg(g) then set g(t) = g(t) / h(t); else g(t) = h(t).

3. Output g(0).

6.9.9.1.3.  Change of Basis

Given a field F2m and two bases B1 and B2 for the field, the following algorithm allows conversion between
bases B1 and B2.

1. Let f(t) be the (irreducible) reduction polynomial of B2.

2. Let γ be a root of f(t) computed with respect to B1. (γ can be computed using the technique
defined in Section 6.9.9.1.2.)

3. Let Γ be the matrix:

Γ =



↵

√
√
√
√

−

−

− − − −

γ γ γ
γ γ γ

γ γ γ

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

, , ,

, , ,

, , ,

L

L

M M O M

K

m

m

m m m m

,

where the entries γi,j are defined as follows:
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✿ If B2 is a polynomial basis then:
1 = (γ 0,0 γ 0,1 ... γ 0,m - 1) = (1,1,…,1),
γ = (γ 1,0 γ1,1 ... γ 1,m - 1),
γ2 = (γ 2,0 γ 2,1 ... γ 2,m - 1),•

•
•

γm-1 = (γ m-1,0 γ m-1,1 ... γ m-1,m - 1),
with respect to B1, where γ 1,i, i = 0,…, m-1, are obtained from 6.9.9.1.2, and the
entries γ i,j , j=0,1,…,m-1, are computed by multiplication of the previous line by
γ  and reduction by the irreducible polynomial of B1, for i =2,…,m-1.

✿ If B2 is an optimal normal basis, then:
γ = (γ 0,0 γ0,1 ... γ0,m - 1)
γ2 = (γ 1,0 γ1,1 ... γ 1,m - 1)
γ 4 = (γ 2,0 γ 2,1 ... γ 2,m - 1)•

•
•

γ2
m-1

 = (γm-1,0 γm-1,1 ... γm-1,m - 1)
with respect to B1, where γ 1,i, i = 0,…, m-1, are obtained from 6.9.9.1.2, and the
entries γ i,j  j=0,1,…,m-1, are computed by squaring of the previous line and
reduction by the irreducible polynomial of B1, for i =1,…,m-1.

4. If an element has representation ( β 0 β 1 ... β m-1) with respect to B2, then its representation
with respect to B1 is

(α 0 α 1 ... α m-1) = (β 0 β 1 ... β m-1) Γ.

If an element has representation (α0 α1 ... αm-1) with respect to B1, then its representation
with respect to B2 is

(β 0 β 1 ... β m-1) = (α 0 α 1 ... α m-1) Γ  -1.

6.9.9.2. Elliptic Curve Algorithms

6.9.9.2.1.  Finding a Point on an Elliptic Curve

The following algorithms provide an efficient method for finding a statistically unbiased and unpredictable
point (other than O) on a given elliptic curve over a finite field.

Case I: Curves over Fp

Input:  A prime p and the parameters a, b of an elliptic curve E over Fp.
Output:  A randomly generated point (other than O) on E.

1. Choose random integer x with 0 ≤ x < p.
2. Set α ← x3 + ax + b mod p.
3. If α = 0 then output (x, 0) and stop.
4. If α(p - 1) /2 ≡ -1 (mod p) then go to Step 1.
5. Find an integer y such that y2 ≡ α (mod p).
6. Output (x, y).

Case II: Curves over F2m.

Input:  A field F2m and the parameters a, b of an elliptic curve E over F2m.
Output:  A randomly generated point (other than O) on E.

1.   Choose random x in F2m.

2.   If x = 0 then output (0, b2
m-1

) and stop.
3.   Set α = x3 + ax2 + b.
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4.   If α = 0 then output (x, 0) and stop.
5.   Set β = x - 2 α.
6.   If Tr(β) = 1 then go to Step 1 (Tr is the trace function).
7.   Find an element z such that z2 + z = β, see [P1363, A.4.7].
8.   Set y = xz.
9.   Output (x, y).

6.9.9.2.2.  Point Decompression

Point decompression (prime case)

Suppose that we are given the x-coordinate xP of P and the bit ~yP . Then yP can be recovered as follows.

1. Compute the field element α = xP
3 + axP + b mod p.

2. Compute a square root β of α mod p, see [P1363, A2.5].

3. If the rightmost bit of β is equal to ~yP  then set yP = β. Otherwise, set yP = p − β.

Point decompression (characteristic 2 case)

Suppose that we are given x~ , which is the x-coordinate xP of P and the bit y~ . Then the coordinates of the

point P can be recovered as follows.

1. Set x := x~ .
2. If  x=0 then let y be a square root of b (to compute a square root of  b square b m-1 times) and go

to Step 8.

3. Compute the field element β = xP + a + bxP
-2 in F2m., see [P1363, A.4.4].

4. Find a field element z such that z2 + z = β, see [P1363, A.4.7]. If the output is “no solution exists,”
then return an error message and stop.

5. Let z~  be the right most bit of z.
6. If  y~ = z~  then   z = z + 1.

7. Compute y = z x.
8. Output (x,y).
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7. Informative Appendix

7.1. Determination of Resynchronization Rate

Choice of Resynchronization rate is dependent on several factors including actual traffic rates and cell loss
rates.  The following information is presented as one possible method for choosing a resynchronization rate.

7.1.1. Expected Cell Loss Rates

Network cell loss statistics can be used to determine the appropriate resynchronization rate.  Typical error
rate requirements for ATM are specified by the Cell Loss Ratio (CLR), which is defined as:  lost cells /
transmitted cells.  CLR requirements differ by type of traffic and Quality of Service (QoS).  A typical worst
case CLR requirement for an ATM network is 10-4 for low-priority Packet Video/Audio traffic when the
Cell Loss Priority (CLP) bit in the cell header is set to one.  This means that a single 622 Mbps connection
carrying this type of traffic with a cell loss ratio of 10-4 will lose sync 142 times per second on average,
assuming no cell loss insensitivity.  This is a worst case example.  More typical error ratios, e.g., 10-7 result
in 0.14 lost cells per second on a full bandwidth 622 Mbps connection.

To conserve the bandwidth required for resynchronization, it is necessary to resynchronize based on the
bandwidth of the connection and the negotiated QoS.  Higher bandwidth connections are resynchronized
more often than those of lower bandwidths are.  Connections with lower CLR may resync at a lower rate
than high CLR connections.

7.1.2. Determining CLR

The encryptor can use the expected CLR of the connection to adjust its frequency of transmitting resync
messages.  The Quality of Service is specified by the host to the switch in the QoS parameter of the SETUP
message.  The encryptor can intercept the SETUP message and use the QoS parameter to determine the
CLR, based on a user configurable mapping function.  The CLR may also be available as an optional QoS
parameter in UNI Signaling 4.0 [3] messages.

7.1.3. Resynchronization Rate

The resynchronization interval can be chosen to be one tenth the cell loss rate (CLR).  For example, a
connection that loses 100 cells per second on average will have a resync rate of 1000 resyncs per second.
Making the resync rate ten times the cell loss rate will ensure that on average only 5 percent of the traffic is
lost due to loss of cryptographic synchronization.  The resync rate for each connection can be based on the
following formula:

Resync rate (resyncs/second) = cell loss ratio (cells dropped/cells transmitted) x sustainable cell rate
(cells transmitted/second) x 10.

Using the above formula, the maximum resync rate for a 622 Mbps connection will be 1417 times a second,
for a CLR of 10-4.  This results in an added overhead of 0.01%.  There may be value in  establishing a
minimum resync rate.

Note: there is no value in resynchronizing in the middle of an AAL5 message, since any cell loss causes the
entire message to be discarded by the receiver.
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7.2. Label-Based Access Control

7.2.1. Scenarios

ATM access control can occur either within an ATM end-point or at any intermediate ATM node (i.e., an
ATM switch or an in-line security device). In each case, network administrators establish (either through the
network management protocol or through direct configuration of the ATM devices) that an ATM physical
interface requires access control parameters. During connection establishment, an ATM component for such
an interface is required to communicate the necessary access control parameters, and an ATM device
receiving these access control parameters would perform access control using those parameters. This
exchange of access control data could occur across (1) an end-point to private switch interface, (2) a private
switch to private switch interface, (3) a private switch to public switch interface, or (4) a public switch to
public switch interface. Also, the initiator of the access control parameters could be either the initiator of the
connection, some intermediate ATM switch, or an ATM security device. A typical application for label-
based access controls is shown in Figure 50.

In this context, multilevel refers to a device that can interpret security labels and can maintain separation of
data marked at different security levels. For this scenario, an enterprise marks its data as either “public,”

Public-Limited

Public-Limited

Public-Limited

Private ATM Network

Multilevel Subscriber Devices

Public ATM
Network

Public

Public-Limited

Single-Level Subscriber Devices

Public-Limited

Public Public

Limited

Figure 50.  Typical Access Control Scenarios.
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indicating that the data is releasable to the public, or “limited,” indicating that the data must stay within the
enterprise. In this scenario, the multilevel devices (switches and multilevel subscriber devices) within the
private ATM network ensure that only publicly releasable information is sent to public subscriber devices
or through the public ATM switches. Within the private ATM network, the multilevel devices (switches and
multilevel subscriber devices) ensure that all connections are labeled.

This scenario requires labeling mechanisms within the private UNI and P-NNI. Figure 51 shows a scenario
using labeling mechanisms within public ATM switches, requiring labeling mechanisms within the public
UNI and B-ICI.

In this second scenario, the public network provider offers a multilevel access control service to subscriber
networks, enabling selected private networks to communicate. Each subscriber interface is labeled with the
set of companies permitted to send data across that interface. This mechanism restricts which private
networks can communicate with a specific company’s private networks. For example, neither Company A
nor Company B could communicate directly with Company C’s private networks. However, companies A
and C do share a common private network (perhaps a consortium, common supplier, or common customer)
through which they might communicate, depending on the policy of that private network. The multilevel
devices (i.e., the public switches and the switches within the multilevel subscriber networks) ensure that
each connection is labeled.
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Access control enforcement is the same for both scenarios. On receipt of a connection request, the
multilevel devices ensure that the connection request either (1) came from a single-level interface, in which
case the connection is labeled at the level of the interface; or (2) came from a multilevel interface, in which
case the connection must be in the set of security levels permitted for that interface. On transmission of a
connection request, the multilevel devices ensure that the connection security level is transmitted during the
connection setup protocol if the request is placed on an interface requiring labeling (e.g., a multilevel
interface).

7.2.2. Label-Based Access Control Concepts

Typical label-based access control mechanisms are based on a concept of sensitivity levels.  A sensitivity
level represents the sensitivity of the data to disclosure.  For example, a sensitivity level might indicate the
extent to which a company’s data must be protected, with different sensitivity levels (e.g., public data,
proprietary, company confidential, company limited, and competition sensitive) indicating different degrees
of control.

A typical sensitivity level comprises two components:  (1) a hierarchical level and (2) a set of access
categories.  These levels are used with a partially ordered relation on the set of sensitivity levels.  This
relation determines whether one sensitivity level is less than, equal to, greater than, or not comparable with

All Companies

All Companies

All Companies

Public ATM Network

Multilevel Subscriber Networks

Private ATM
Network

Private ATM
Network

Private ATM
Network

Company C

Companies A, C

Single-Level Subscriber Networks

Companies A, B

Company A

Private ATM
Network

Company B

Private ATM
Network

Company C

Private ATM
Network

Figure 51.  Access Control Scenario for Public Switches.



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 196 ATM Forum Technical Committee

another sensitivity level.  The hierarchical level component of a sensitivity level is linearly ordered, with its
own “less than” relation. The relation used for the access category sets is set containment.  That is, one set
of access categories is said to be “less than or equal to” another set of access categories if the first is a
subset of the second. The first is said to be “less than” the second if the first is a proper subset of the
second.  Thus, sensitivity level SL1=(HL1, SC1) is less than or equal to sensitivity level SL2=(HL2, SC2)
provided HL1 is less than or equal to HL2 and SC1 is a subset of SC2, where HL1 and HL2 are the
hierarchical level components and SC1 and SC2 are the access category set components of SL1 and SL2,
respectively.

Sensitivity labels are the physical representation of a sensitivity level. There may be multiple
representations of the same sensitivity level.  For a given sensitivity level, there are typically multiple
representations (or sensitivity labels), including the human readable label (e.g., company limited/finance)
and the internal representation of that label within a computing system.

7.2.3. Label-Based Access Control Rules

Label-based access control mechanisms within a network component require that each network object (i.e.,
packet or connection) have an associated sensitivity level and typically assign maximum and minimum
sensitivity levels to each external physical interface to enable enforcement of the following rules.

1. The system may transmit a network object across a physical interface provided the object’s
sensitivity level is less than or equal to the interface’s maximum sensitivity level.

2. The system may accept a network object across a physical interface for delivery provided the
object’s sensitivity level is less than or equal to the interface’s maximum sensitivity level and
greater than or equal to the interface’s minimum sensitivity level.

Note that the object sensitivity level may be determined either by a label attached to the object or implicitly
by the sensitivity level of the physical interface in the case when the maximum and minimum sensitivity
levels of the physical interface are equal.

In the context of performing label-based access control only on connection setup, the network object is the
connection, and the label would be carried in the setup message.

7.3. Security Services Information Element Examples

7.3.1. Initiate In-Band Security Message Exchange

7.3.1.1. Simple In-Band Exchange Indication

This example declares that a security service will be required on this developing VC, and that In-Band
Security Message Exchange will be used between the two security agents to establish the service.  The
initiating security agent places this SSIE in the call SETUP message:
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Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x0008 (8) 3 - 4
Length of Security Services Information Element

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 5

0x0005 (5)
Security Association Section Length 6 - 7

0 0 0 1 1 0 0 1
Version Transport Ind. Flow Indicator Discard 8

0 0 1 0 0 0 0 0
Region (Remote) 9

1 1 1 0 0 0 0 0
Role (Any) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12
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The responding security agent places this SSIE in the call CONNECT message:

Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x0008 (8)
Length of Security Services Information Element 3 - 4

0 0 0 0 0 0 0 0
Security Association Service Identifier 5

0x0005 (5)
Security Association Section Length 6 - 7

0 0 0 1 1 0 1 1
Version Transport Ind. Flow Indicator Discard 8

1 1 1 1 1 1 1 1
Region (Remote) 9

1 1 1 1 1 1 1 1
Role (Any) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12



ATM Security Specification, Version 1.0 af-sec-0100.001

ATM Forum Technical Committee Page 199

7.3.1.2. With Requested Service Declaration

This example initiates an In-Band Security Message Exchange between two security agents.  The initiating
security agent declares its intent to authenticate and support data integrity in an In-Band exchange,
providing the responding security agent the ability to deny the call if authentication and integrity are not
supported.  The initiating security agent places this SSIE in the call SETUP message:

Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x000B (11) 3 - 4
Length of Security Services Information Element

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 5

0x0008 (8)
Security Association Section Length 6 - 7

0 0 0 1 1 0 0 1
Version Transport Ind. Flow Indicator Discard 8

0 0 1 0 0 0 0 0
Region (Remote) 9

1 1 1 0 0 0 0 0
Role (Any) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12

1 0 0 0 1 0 0 0

Security Service Specification Section Identifier 13

1 0 0 0 1 0 1 0

Security Service Declaration Identifier 14

0 0 0 0 0 1 1 0

Security Service Declaration (authentication and integrity) 15

In this example, the responding security agent accepts the call, despite the fact that it cannot support data
integrity. In the CONNECT message, the responding security agent must also make a security service
declaration, indicating that it can support establishing authentication in an In-Band exchange.  It is then up
to the initiating security agent to decide if the VC and the subsequent In-Band negotiation should proceed.
If the initiating security agent cannot continue due to its local security policy, i.e., the VC must support
cryptographic integrity, then the initiating security agent will instruct its signaling entity to clear the call
with the appropriate cause code and diagnostic, “Security Policy Violation” (see Section 5.1.6).  The
responding security agent places this SSIE in the call CONNECT message:
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Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x000B (11)
Length of Security Services Information Element 3 - 4

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 5

0x0008 (8)
Security Association Section Length 6 - 7

0 0 0 1 1 0 1 1
Version Transport Ind. Flow Indicator Discard 8

1 1 1 1 1 1 1 1
Region (Remote) 9

1 1 1 0 0 0 0 0
Role (Any) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12

1 0 0 0 1 0 0 0

Security Service Specification Section Identifier 13

1 0 0 0 1 0 1 0

Security Service Declaration Identifier 14

0 0 0 0 0 1 0 0

Security Service Declaration (authentication) 15

7.3.2. Two Way Security Message Exchange

This example provides endpoint-to-endpoint authentication using the 2-way Security Message Exchange
protocol  in signaling.  Because in 2-way SME, the distinguished name of the responding security agent (B)
is known, explicit security agent addressing is used in the SSIE.  Since (B) is included in the SSIE SAS
explicit scope field, it is not needed in the SME section of the SAS.  Initiator (A) declares that it requires
authentication and provides the optional fields needed to provide replay protection, Ta and Ra.

FLOW1-2WE: A −> B

A, B, SecOpt, {Ta, Ra, {EncKb (ConfPara)}, SigKa (Hash (A, B, Ta, Ra, SecOpt,

{ConfPara}))}
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Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x008A (138)
Length of Security Services Information Element 3 - 4

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 5

0x87 (135)
Security Association Section Length 6 - 7

0 0 0 0 0 0 0 1
Version Transport Ind. Flow Indicator Discard 8

1 0 0 0 0 0 0 0
Scope (Explicit) 9

0 0 0 0 0 0 0 0
Role (Explicit) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12

1 0 0 0 0 1 0 0
Security Agent Identifier (B) 13

0 0 0 1 0 1 0 0
Security Agent Identifier Length (0x14) (20) 14

0 0 0 0 0 1 0 0
Security Agent Identifier Type (AESA NSAP ICD) 15

0x4302340515231912110098096245F2A8B2127400
Security Agent Identifier Value 16 - 35

0 0 1 0 0 1 1 0
Security Message Exchange Format (Two Way) 36

1 0 0 0 0 0 1 0
Initiator Distinguished Name Identifier (A) 37

0 0 0 1 0 1 0 0
Initiator Distinguished Name Length (0x14) 38

0 0 0 0 0 1 0 0
Initiator Distinguished Name Type (AESA NSAP ICD) 39
0x4302340515231912110098096218430DE6372812

Initiator Distinguished Name Value 40 - 59



af-sec-0100.001 ATM Security Specification, Version 1.0

Page 202 ATM Forum Technical Committee

1 0 0 0 1 0 0 0

Security Service Specification Section (SecOpt) 60

1 0 0 1 0 0 1 1

Authentication Service Options 61

1 0 0 0 0 0 0 1
Requires Authentication 62

1 1 0 1 0 1 1 0

Time-Variant Time Stamp 63

0x67456721 0x00000001

Time-Variant Time Stamp Value 64 - 71
1 1 0 1 0 1 0 0

Initiator Random Number (Ra) 72

0xB564A3E1

Initiator Random Number Value 73 - 76

1 1 0 1 1 0 1 0

Security Message Exchange Digital Signature Identifier 77

0 1 0 0 0 0 0 0

Security Message Exchange Digital Signature Length (64) 78

Digital Signature Value 79 - 142.
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FLOW2-2WE: B−> A

A, B, Ra, {EncKa (ConfParb)}, SigKb (Hash (A, B, Ra, {ConfParb}))}

Bits
8 7 6 5 4 3 2 1 Octet(s)

Security Services Information Element
x x x x x x x x 1

Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

2

0x007E (126)
Length of Security Services Information Element 3 - 4

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 5

0x007B (123)
Security Association Section Length 6 - 7

0 0 0 0 0 0 1 1
Version Transport Ind. Flow Indicator Discard 8

1 1 1 1 1 1 1 1
Region (remote) 9

1 1 1 0 0 0 0 0
Role (any) 10

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 11

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 12

0 0 1 0 0 1 1 0
Security Message Exchange Format (Two Way) 13

1 0 0 0 0 0 1 0
Initiator Distinguished Name Identifier (A) 14

0 0 0 1 0 1 0 0
Initiator Distinguished Name Length 15

0 0 0 0 0 1 0 0
Initiator Distinguished Name Type (AESA NSAP ICD) 16
0x4302340515231912110098096218430DE6372812

Initiator Distinguished Name Value 17 – 36
1 0 0 0 0 0 1 1

Responder Distinguished Name Identifier (B) 37
0 0 0 1 0 1 0 0

Responder Distinguished Name Length 38
0 0 0 0 0 1 0 0

Responder Distinguished Name Type (AESA NSAP ICD) 39
0x4302340515231912110098096245F2A8B2127400

Initiator Distinguished Name Value 40 – 59
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1 1 0 1 0 1 0 0

Initiator Random Number Identifier 60

0xB564A3E1

Initiator Random Number Value 61 - 64

1 1 0 1 1 0 1 0

Security Message Exchange Digital Signature Identifier 65

0 1 0 0 0 0 0 0

Security Message Exchange Digital Signature Length (64) 66

Digital Signature Value 67 - 130.
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7.3.3. Three Way Security Message Exchange

This example establishes endpoint-to-endpoint confidentiality, authentication, key exchange, and session
key update using the 3-way Security Message Exchange protocol , in-band.

Initiator (A) requests confidentiality, authentication, key exchange, and session key update.  To do this A
declares the five security services it requires and then specifies two choices for the confidentiality
algorithm, a signature algorithm, a hash algorithm, a key exchange algorithm, and a session key update
algorithm.  The confidentiality algorithms are DES/CBC and FEAL/CBC, the signature algorithm is
FEAL/CBC, the hash algorithm is HMAC-MD5, the key exchange algorithm is FEAL/CBC, and session
key update algorithm uses HMAC-MD5.

FLOW1-3WE: A−>B

A, {B}, SecNega, Ra, {Certa}

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 0 0 0 0 1

In-Band Message Type 1
0x0053 (99)

In-Band Message Length 2 - 3
Security Services Information Element

x x x x x x x x 4
Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

5

0x0050 (96)
Length of Security Services Information Element 6 - 7

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 8

0x4D (93)
Security Association Section Length 9 - 10

0 0 0 1 1 0 0 1
Version Transport Ind. Flow Indicator Discard 11

0 0 1 0 0 0 0 0
Region (remote) 12

1 1 1 0 0 0 0 0
Role (any) 13

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 14

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 15

1 0 0 0 0 1 0 0
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Security Agent Identifier {B} 16
0 0 0 1 0 1 0 0

Security Agent Identifier Length (0x14) 17
0 0 0 0 0 1 0 0

Security Agent Identifier Type (AESA NSAP ICD) 18
0x4302340515231912110098096245F2A8B2127400

Security Agent Identifier Value 19 - 38
0 0 1 0 0 1 1 1

Security Message Exchange Format (Three Way) 39
1 0 0 0 0 0 1 0

Initiator Distinguished Name Identifier (A) 40
0 0 0 1 0 1 0 0

Initiator Distinguished Name Length (0x14) 41
0 0 0 0 0 1 0 0

Initiator Distinguished Name Type (AESA NSAP ICD) 42
0x4302340515231912110098096218430DE6372812

Initiator Distinguished Name Value 43 - 62
1 0 0 0 1 0 0 0

Security Service Specification Section (SecNega) 63

1 0 0 0 1 0 1 0

Security Service Declaration Identifier 64

0 0 1 0 1 1 1 1
Security Service Declaration 65

1 0 1 0 0 0 0 0

Data Confidentiality Algorithm Identifier 66

0 0 0 1 0 0 1 0

Length of Data Confidentiality Algorithm Contents (18) 67
0 0 0 0 0 0 1 1

Data Confidentiality Algorithm (Triple DES 112 key) 68

0 0 0 0 0 0 1 0

Data Confidentiality Algorithm Mode of Operation (Counter Mode) 69

1 0 1 0 0 0 0 0

Data Confidentiality Algorithm Identifier 70

0 0 0 0 1 1 0 0

Length of Data Confidentiality Algorithm Contents (12) 71
0 0 0 0 0 1 0 0

Data Confidentiality Algorithm (FEAL) 72

0 0 0 0 0 0 0 1

Data Confidentiality Algorithm Mode of Operation (CBC) 73

0x238609F0E71A9D17

Data Confidentiality Algorithm Details

Initialization Vector (FEAL)
74 - 81

1 0 1 0 0 1 1 0

Signature Algorithm Identifier 82

0 0 0 0 0 0 0 1

Length of Signature Algorithm Identifier 83

0 0 0 0 1 0 0 0

Signature Algorithm (FEAL/CBC) 84
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1 0 1 0 0 1 0 0

Hash Algorithm Identifier 85

0 0 0 0 0 0 0 1

Length of Hash Algorithm Contents (1) 86

1 0 1 0 0 0 0 1
Hash Algorithm (HMAC-MD5) 87

1 0 1 0 1 0 0 0

Key Exchange Algorithm Identifier 88

0 0 0 0 0 0 0 1

Length of Key Exchange Algorithm Contents (1) 89

0 0 0 0 0 0 0 1
Key Exchange Algorithm (FEAL/CBC) 90

1 0 1 0 1 0 1 0

Session Key Update Algorithm Identifier 91

0 0 0 0 0 0 0 1

Length of Session Key Update Algorithm Contents (1) 92

0 0 0 0 0 0 1 0
Session Key Update Algorithm (SKE with HMAC-MD5) 93

0 1 0 1 0 0 0 0

Authentication Section Identifier 94

1 1 0 1 0 1 0 0

Initiator Random Number Identifier (Ra) 95

0x7A52D245

Initiator Random Number Value 96 - 99
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Responder (B) requires confidentiality, authentication, and key exchange.  The confidentiality algorithm is
FEAL/CBC, the signature algorithm is FEAL/CBC, the hash algorithm is HMAC-MD5, and the key
exchange algorithm is FEAL/CBC.

FLOW2-3WE: B −> A

A, B, SecNegb, {{EncKa (ConfParb)}, Ra, Rb, {Certb}, SigKb (Hash (A, B, Ra, Rb,

SecNega, SecNegb, {ConfParb}))}

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 0 0 0 1 0

In-Band Message Type 1
0x0099 (153)

In-Band Message Length 2 - 3
Security Services Information Element

x x x x x x x x 4
Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

5

0x0095 (149) 6 – 7
Length of Security Services Information Element

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 8

0x0092 (146)
Security Association Section Length 9 – 10

0 0 0 1 1 0 1 1
Version Transport Ind. Flow Indicator Discard 11

1 1 1 1 1 1 1 1
Region 12

1 1 1 0 0 0 0 0
Role (any) 13

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 14

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 15

0 0 1 0 0 1 1 1
Security Message Exchange Format (Three Way) 16

1 0 0 0 0 0 1 0
Initiator Distinguished Name Identifier (A) 17

0 0 0 1 0 1 0 0
Initiator Distinguished Name Length 18

0 0 0 0 0 1 0 0
Initiator Distinguished Name Type (AESA NSAP ICD) 19
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0x4302340515231912110098096218430DE6372812
Initiator Distinguished Name Value 20 – 39

1 0 0 0 0 0 1 1
Responder Distinguished Name Identifier (B) 40

0 0 0 1 0 1 0 0
Responder Distinguished Name Length 41

0 0 0 0 0 1 0 0
Responder Distinguished Name Type (AESA NSAP ICD) 42

0x4302340515231912110098096245F2A8B2127400
Initiator Distinguished Name Value 43 – 62

1 0 0 0 1 0 0 0

Security Service Specification Identifier (SecNegb) 63

1 0 0 0 1 0 1 0

Security Service Declaration Identifier 64

0 0 1 0 1 1 0 1
Security Service Declaration 65

1 0 1 0 0 0 0 0

Data Confidentiality Algorithm Identifier 66

0 0 0 0 1 1 0 0

Length of Data Confidentiality Algorithm Contents (12) 67
0 0 0 0 1 0 0 0

Data Confidentiality Algorithm (FEAL) 68

0 0 0 0 0 0 1 0

Data Confidentiality Algorithm Mode of Operation (CBC) 69

0x238609F0E71A9D17

Data Confidentiality Algorithm Details

Initialization Vector (FEAL CBC)
70 – 77

1 0 1 0 0 1 1 0

Signature Algorithm Identifier 78

0 0 0 0 0 0 0 1

Length of Signature Algorithm Identifier 79

0 0 0 0 1 0 0 0

Signature Algorithm (FEAL/CBC) 80

1 0 1 0 0 1 0 0

Hash Algorithm Identifier 81

0 0 0 0 0 0 0 1

Length of Hash Algorithm Contents (1) 82

0 0 0 0 0 0 0 1
Hash Algorithm (HMAC-MD5) 83

1 0 1 0 1 0 0 0

Key Exchange Algorithm Identifier 84

0 0 0 0 0 0 0 1

Length of Key Exchange Algorithm Contents (1) 85

0 0 0 0 1 0 0 0
Key Exchange Algorithm (FEAL/CBC) 86

1 0 1 0 1 0 1 0

Session Key Update Algorithm Identifier 87

0 0 0 0 0 0 0 1
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Length of Session Key Update Algorithm Contents (1) 88

0 0 0 0 0 0 0 1
Session Key Update Algorithm (SKE with MD5) 89

0 1 0 0 0 0 0 0

Confidential Section Identifier (ConfParb)
90

0 0 0 1 1 0 0 0
Length of Confidential Section (64) 91

Confidential Data 92 - 115
1 1 0 1 0 0 0 0

Authentication Section Identifier 116

1 1 0 1 0 1 0 0

Initiator Random Number Identifier (Ra) 117

0x7A52D245

Initiator Random Number Value 118 - 125
1 1 0 1 0 1 0 1

Responder Random Number Identifier (Rb) 126

0x3A29657D

Responder Random Number Value 127 - 134
1 1 0 1 1 0 1 0

Security Message Exchange Digital Signature Identifier 135

0 0 0 1 0 1 0 0

Security Message Exchange Digital Signature Length (64) 136

Digital Signature Value 137 - 156.
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FLOW3-3WE: A −> B

{A, B, {EncKb (ConfPara)}, Rb, SigKa (Hash (A, B, Rb, {ConfPara}))}

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 0 0 0 1 1

In-Band Messsage Type 1
0x0084 (132)

In-Band Message Length 2-3
Security Services Information Element

x x x x x x x x 4
Information element identifier

1 Coding
Information Element Instruction Field

Ext Standard Flag Reserved Information Element Action
Indicator

5

0x0080 (128)
Length of Security Services Information Element 6 - 7

0 0 0 0 0 0 0 1
Security Association Service Identifier (SME) 8

0x007D (125)
Security Association Section Length 9 - 10

0 0 0 1 1 1 0 1
Version Transport Ind. Flow Indicator Discard 11

1 1 1 1 1 1 1 1
Scope 12

0 0 0 0 0 0 0 1
Relative ID (Security Association ID) 13

0 0 0 1 0 0 0 0
Relative ID (SAS Number) reserved 14

0 0 1 0 0 1 1 1
Security Message Exchange Format (Three Way) 15

1 0 0 0 0 0 1 0
Initiator Distinguished Name Identifier (A) 16

0 0 0 1 0 1 0 0
Initiator Distinguished Name Length 17

0 0 0 0 0 1 0 0
Initiator Distinguished Name Type (AESA NSAP ICD) 18
0x4302340515231912110098096218430DE6372812

Initiator Distinguished Name Value 19 - 38
1 0 0 0 0 0 1 1

Responder Distinguished Name Identifier (B) 39
0 0 0 1 0 1 0 0

Responder Distinguished Name Length 40
0 0 0 0 0 1 0 0
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Responder Distinguished Name Type (AESA NSAP ICD) 41
0x4302340515231912110098096245F2A8B2127400

Initiator Distinguished Name Value 42 - 61
1 1 0 0 0 0 0 0

Confidential Section Identifier (ConfPara)
62

0 0 0 1 1 0 0 0
Length of Confidential Section (24) 63

Confidential Data 64 - 87
0 1 0 1 0 0 0 0

Authentication Section Identifier 88

1 0 1 1 0 1 0 1

Responder Random Number Identifier (Rb) 89

0x3A29657D

Initiator Random Number Value 90 - 93
1 0 1 1 1 0 1 0

Security Message Exchange Digital Signature Identifier 94

0 1 0 0 0 0 0 0

Security Message Exchange Digital Signature Length (64) 95

Digital Signature Value 96 - 135
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FLOW3-3 CONFIRM-AP: B −> A

CONFIRM-AP

Bits
8 7 6 5 4 3 2 1 Octet(s)
0 0 1 1 0 0 0 1

In-Band Message Type 1
0x0000 (0)

In-Band Message Length 2 - 3


