ATP-247
GPON & XG-PON1 ONU Conformance Abstract Test Plan
Issue 3
Issue Date: May 2014
Notice

The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development and deployment. This Broadband Forum Abstract Test Plan has been approved by members of the Forum. This Broadband Forum Abstract Test Plan is not binding on the Broadband Forum, any of its members, or any developer or service provider. This Broadband Forum Abstract Test Plan is subject to change, but only with approval of members of the Forum. This Abstract Test Plan is copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Abstract Test Plan may be copyrighted by Broadband Forum members.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS SPECIFICATION SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER the Forum, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS SPECIFICATION.

Broadband Forum Abstract Test Plans may be copied, downloaded, stored on a server or otherwise re-distributed in their entirety only, and may not be modified without the advance written permission of the Broadband Forum.
The text of this notice must be included in all copies of this Broadband Forum Abstract Test Plan.

© 2014, The Broadband Forum. All rights reserved. This Broadband Forum document (ATP-247) specifies the Test Plan on which is based the BBF.247 Certification Program for G-PON & XG-PON1 ONU products. Through an open selection process, the Broadband Forum entered into an agreement with one or more independent Test Agencies to offer commercial testing services against this Test Plan and to confirm results to the Broadband Forum in connection with the Forum's delivery of BBF.247 Certification. Offering Certification testing services against this Test Plan is reserved to the Test Agencies duly authorized by the Broadband Forum. Broadband Forum members can independently test against ATP-247, but may only produce limited reports which only detail where a given product has failed a test case.

NOTE: The right to display a Broadband Forum Certification Logo may only be granted by the Broadband Forum, and that right is available only to Broadband Forum members that have successfully passed certification testing by a duly authorized Test Agency. Further details on the Broadband Forum Certification Programs can be found at http://www.broadband-forum.org
ATP Issue History

<table>
<thead>
<tr>
<th>Issue Number</th>
<th>Approval Date</th>
<th>Publication Date</th>
<th>Issue Editor</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>October 2011</td>
<td></td>
<td>Michael Shaffer, Alcatel-Lucent</td>
<td>Original</td>
</tr>
<tr>
<td>2</td>
<td>April 2013</td>
<td>11 June 2013</td>
<td>Lincoln Lavoie, UNH InterOperability Lab Michael Shaffer, Alcatel-Lucent Yuan Liquan, ZTE</td>
<td>Updates to include ONU Profiles and ONU/RG devices.</td>
</tr>
<tr>
<td>3</td>
<td>May 2014</td>
<td>16 May 2013</td>
<td>Lincoln Lavoie, UNH InterOperability Lab Michael Shaffer, Alcatel-Lucent Yuan Liquan, ZTE Vincent Buchoux, LAN</td>
<td>Support of XG-PON1 Support of SFP/ONU & PON fed VDSL2 ONU</td>
</tr>
</tbody>
</table>

Comments or questions about this Broadband Forum Abstract Test Plan should be directed to help@broadband-forum.org.

Editors
- Michael Shaffer Alcatel-Lucent
- Lincoln Lavoie UNH InterOperability Lab
- Yuan Liquan ZTE
- Vincent Buchoux LAN

FAN WG Chairs
- Michael Shaffer Alcatel-Lucent
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 11

1 PURPOSE AND SCOPE .. 12
 1.1 PURPOSE .. 12
 1.2 SCOPE ... 12

2 REFERENCES AND TERMINOLOGY .. 13
 2.1 CONVENTIONS .. 13
 2.2 REFERENCES ... 14
 2.3 DEFINITIONS ... 16
 2.4 ABBREVIATIONS ... 18

3 ABSTRACT TEST PLAN IMPACT .. 21
 3.1 ENERGY EFFICIENCY .. 21
 3.2 IPv6 .. 21
 3.3 SECURITY ... 21
 3.4 PRIVACY .. 21

4 TEST METHODOLOGY ... 22
 4.1 STANDARDS CONFORMANCE TESTING .. 22
 4.2 ONU TESTING REQUIREMENTS .. 22
 4.2.1 ONU Clean-slate Requirements .. 22
 4.2.2 ONU/L2 ... 23
 4.2.3 Multi-managed ONU ... 29
 4.3 TEST SETUP ... 33
 4.3.1 OLT Emulator Requirements ... 33
 4.3.2 GPON Analyzer Requirements .. 34
 4.3.3 Optical Distribution Network Requirements .. 35
 4.3.4 Unit under Test Management Interface Requirements .. 35
 4.3.5 Selection of Random Values Used in Test Cases .. 35
 4.3.6 ONU Conformance Test Setup .. 36
5 TEST CASE SUMMARY .. 38

6 ONU CONFORMANCE TESTS.. 38

6.1 CLASSIFICATION AND TAGGING ... 39

6.1.1 Single untagged U-interface .. 39

6.1.2 Single U-interface with symmetric VLAN tag translation .. 42

6.1.3 Deriving P-bits as a function of received P-bits (single user port) ... 45

6.1.4 Addition of an S-Tag in the Upstream Direction in a VBES Architecture 47

6.1.5 Validation of an S-Tag in the Upstream Direction in a VBES Architecture 49

6.1.6 Translation of an S-Tag in the Upstream Direction in a VBES Architecture 51

6.1.7 Removal of an S-Tag in the Downstream Direction in a VBES Architecture 53

6.1.8 Translation of an S-Tag in the Downstream Direction in a VBES Architecture 55

6.1.9 Test Case Reserved For Future Use .. 57

6.1.10 Deriving P-bits as a function of received VID (single user port) ... 58

6.1.11 Deriving P-bits as a function of received Ethertype (single user port) 60

6.1.12 Deriving P-bits as a function of received user port ... 62

6.1.13 VID Support for Untagged Frames (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface) ... 64

6.1.14 VID Support for Untagged Frames (1:1 VLAN Architecture Double-Tagged at the V Interface) .. 66

6.1.15 VID Support for Priority Tagged Frames with Priority Preservation (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface) ... 68

6.1.16 VID Support for Priority Tagged Frames without Priority Preservation (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface) ... 70

6.1.17 VID Support for Priority Tagged Frames with Priority Preservation (1:1 VLAN Architecture Double-Tagged at the V Interface) .. 72

6.1.18 VID Support for Priority Tagged Frames without Priority Preservation (1:1 VLAN Architecture Double-Tagged at the V Interface) .. 74

6.1.19 ONU addition and removal of C-Tag for 1:1 VLANs .. 76

6.1.20 ONU addition and removal of S-Tag for 1:1 VLANs .. 79

6.1.21 ONU translation between Q-Tag and C-Tag for 1:1 VLANs ... 81

6.1.22 ONU translation between Q-Tag and S-Tag for 1:1 VLANs ... 84

6.1.23 Test case reserved for future use. ... 87

6.1.24 Deriving P-bits as a function of received P-bits for a VBES architecture (single user port) 88

6.1.25 Deriving P-bits as a function of received VID for a 1:1 or N:1 architecture (single user port) ... 90
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.26</td>
<td>Deriving P-bits as a function of received Ethertype for a 1:1 or N:1 architecture (single user port)</td>
<td>92</td>
</tr>
<tr>
<td>6.1.27</td>
<td>Deriving P-bits as a function of received user port for a 1:1 or N:1 architecture</td>
<td>94</td>
</tr>
<tr>
<td>6.2</td>
<td>FRAME MAPPING AND QoS</td>
<td>96</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Single U-interface with multiple downstream GEM ports</td>
<td>96</td>
</tr>
<tr>
<td>6.2.2</td>
<td>User Isolation on ONU Devices with Multiple U-interfaces</td>
<td>99</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Mapping Traffic from GEM Ports to U Interface in the Downstream Direction in a VBES Architecture</td>
<td>102</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Mapping traffic into GEM Ports based on P-bit values in the upstream direction (single user port)</td>
<td>104</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Mapping traffic into GEM Ports based on VID values in the upstream direction (single user port)</td>
<td>106</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (single user port)</td>
<td>108</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Mapping traffic into GEM Ports based on P-bit values in the upstream direction (multiple user port)</td>
<td>110</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Mapping traffic into GEM Ports based on VID values in the upstream direction (multiple user port)</td>
<td>112</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (multiple user port)</td>
<td>114</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Mapping multiple P-bit values to the same GEM port (single user port)</td>
<td>116</td>
</tr>
<tr>
<td>6.2.11</td>
<td>Test Case Reserved For Future Use</td>
<td>118</td>
</tr>
<tr>
<td>6.2.12</td>
<td>Strict priority downstream scheduling among 4 queues on ONU</td>
<td>119</td>
</tr>
<tr>
<td>6.2.13</td>
<td>Indicating drop precedence using P-bits upstream</td>
<td>122</td>
</tr>
<tr>
<td>6.2.14</td>
<td>Indicating drop precedence using DEI bit upstream</td>
<td>124</td>
</tr>
<tr>
<td>6.2.15</td>
<td>Indicating drop precedence using P-bits downstream</td>
<td>126</td>
</tr>
<tr>
<td>6.2.16</td>
<td>Indicating drop precedence using DEI bit downstream</td>
<td>128</td>
</tr>
<tr>
<td>6.2.17</td>
<td>Test Case Reserved For Future Use</td>
<td>130</td>
</tr>
<tr>
<td>6.2.18</td>
<td>Test Case Reserved For Future Use</td>
<td>130</td>
</tr>
<tr>
<td>6.2.19</td>
<td>Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction</td>
<td>131</td>
</tr>
<tr>
<td>6.2.20</td>
<td>Test Case Reserved For Future Use</td>
<td>133</td>
</tr>
<tr>
<td>6.2.21</td>
<td>Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction</td>
<td>134</td>
</tr>
<tr>
<td>6.2.22</td>
<td>Test Case Reserved For Future Use</td>
<td>136</td>
</tr>
<tr>
<td>6.2.23</td>
<td>Test Case Reserved For Future Use</td>
<td>136</td>
</tr>
<tr>
<td>6.2.24</td>
<td>Test Case Reserved For Future Use</td>
<td>136</td>
</tr>
<tr>
<td>6.3</td>
<td>IGMP CONTROLLED MULTICAST</td>
<td>137</td>
</tr>
<tr>
<td>6.3.1</td>
<td>ONU passing of downstream IGMP messages</td>
<td>137</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Test Case Reserved For Future Use</td>
<td>139</td>
</tr>
<tr>
<td>6.3.3</td>
<td>ONU silent discarding of IGMPv1 messages</td>
<td>140</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Test Case Reserved For Future Use</td>
<td>142</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Marking Upstream IGMP Messages with Ethernet P-Bits</td>
<td>143</td>
</tr>
</tbody>
</table>
6.3.6 IGMP controlled Multicast

6.3.7 Multicast White List

6.3.8 IGMP rate limit

6.3.9 IGMP immediate leave

6.3.10 Maximum number of multicast flows

6.3.11 IGMP transparent Snooping

6.3.12 Multicast VLAN membership based on user ports (Multiple User ports)

6.3.13 IGMP transparent Snooping (Multiple User ports)

6.3.14 IGMP Transparent forwarding

6.4 Non-IGMP Controlled Multicast and Broadcast

6.5 Filtering

6.6 TR-156 Other

6.7 Initial Provisioning of ONU

6.8 ONU Bring-up

6.9 MIB and Alarm Synchronization
6.9.1 Alarm synchronization ... 187
6.9.2 MIB synchronization: Correct Data Sync ... 189
6.9.3 MIB synchronization: MIB Upload ... 191
6.10 SOFTWARE IMAGE DOWNLOAD ... 193
 6.10.1 Software Image Download, multiple window sizes, padded final window ... 193
 6.10.2 Software Image Download, shortened final window ... 195
 6.10.3 Failed Software Image Download, missing section ... 197
 6.10.4 Failed Software Image Download, incorrect section CRC ... 199
 6.10.5 Failed Software Image Download, incorrect software image CRC ... 201
 6.10.6 Test Case Reserved For Future Use ... 203
 6.10.7 Activate uncommitted software image ... 204
 6.10.8 Commit software image ... 206
6.11 CIRCUIT PACKS .. 208
 6.11.1 Test Case Reserved For Future Use ... 208
 6.11.2 Test Case Reserved For Future Use ... 208
 6.11.3 Cardholder or port mapping package for integrated ONU ... 209
 6.11.4 Test Case Reserved For Future Use ... 211
 6.11.5 Test Case Reserved For Future Use ... 211
 6.11.6 Test Case Reserved For Future Use ... 211

ANNEX A: TEST CASE TEMPLATE ... 212

ANNEX B: OMCI PROCEDURE DETAILS ... 214

ANNEX C: OMCI SCRAMBLER PRINCIPLE OF OPERATION ... 215

ANNEX D: OMCI SCRAMBLER EXAMPLE IMPLEMENTATION ... 216
List of Figures

Figure 1 – Network architecture for Ethernet-based GPON aggregation (TR-167 issue 2 [11]) ... 32
Figure 2 - Basic test setup for ONU conformance testing .. 36
Figure 3 – Basic test setup for multiple subscriber ONU .. 37
Executive Summary
In order to create a process for the ongoing promotion of GPON interoperability, Broadband Forum has embarked on a GPON certification program. The core feature of this program is the verification of GPON ONU adherence to the relevant BBF and ITU-T technical specifications by accredited testing agencies. To provide a consistent scope for this verification, BBF developed test plans that are to be used by the testing agencies in the verification process.

ATP-247 provides a test plan that may be used to verify conformance of a GPON ONU to the requirements defined in TR-156 [3]. Additionally, this plan verifies that the OMCI implementation contained in a GPON ONU adheres to the practices described in Appendix I and II of G.988.

Updates for Issue 3 include:
- Support of XG-PON1
- Inclusion of the Multi-managed ONU profile allowing the support of SFP/ONU and PON fed VDSL2 ONU types (including the already existing ONU/RG type)

Abstract Test Plan Notes:
The Abstract Test Plan (ATP) version of this document removes specific items from each test case, such as the test procedure and pass/fail metrics. These items are contained in the full text within IR-247i3. The full IR-247i3 is available to Broadband Forum members in good standing, and may be downloaded from the Broadband Forum website, http://www.broadband-forum.org/private/download/IR-247_Issue-3.pdf.
1 Purpose and Scope

1.1 Purpose

This test plan describes a series of tests that may be used to verify whether particular ONU implementations conform to TR-156 [3] functional requirements, and that the related configuration recommendations from the OMCI Implementer's Guide have been implemented.

1.2 Scope

The tests cases defined in ATP-247 are dedicated to testing standards conformance. This includes a limited set of key test cases that can verify the conformance of GPON ONU to a defined set of Broadband Forum TR-156 [3] requirements, and the related recommendations from Appendix I and II of G.988 [2].

These test cases include verification of conformance regarding both the required GPON equipment functionality, and the implementation of the OMCI protocol by that equipment. ATP-247 is designed to verify the particular functions of GPON implementations that are the most critical to real-world service providers’ deployments.

Testing of system level performance of GPON equipment is for further study.

XG-PON1 ONUs compliant with the ITU-T G.987 series of specifications may be tested using the test cases defined here to verify their compliance with TR-156 [3] and G.988 [2]. Test cases that verify extensions found in G.988 that are unique to XG-PON1 are for future study.

Note: The remainder of this document uses the term GPON in a generic manner to refer to any ITU-T TDM PON including GPON, and XG-PON1. In the same way, the term GEM port refers to GEM port and XGEM port, and GTC refers to GTC and XGTC, PLOAM to PLOAM and XPLOAM.
2 References and Terminology

2.1 Conventions

In this Abstract Test Plan, several words are used to signify the requirements of the specification. These words are always capitalized. More information can be found be in RFC 2119 [1].

MUST This word, or the term “REQUIRED”, means that the definition is an absolute requirement of the specification.

MUST NOT This phrase means that the definition is an absolute prohibition of the specification.

SHOULD This word, or the term “RECOMMENDED”, means that there could exist valid reasons in particular circumstances to ignore this item, but the full implications need to be understood and carefully weighed before choosing a different course.

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED" means that there could exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications need to be understood and the case carefully weighed before implementing any behavior described with this label.

MAY This word, or the term “OPTIONAL”, means that this item is one of an allowed set of alternatives. An implementation that does not include this option MUST be prepared to inter-operate with another implementation that does include the option.
2.2 References

The following references are of relevance to this Abstract Test Plan. At the time of publication, the editions indicated were valid. All references are subject to revision; users of this Abstract Test Plan are therefore encouraged to investigate the possibility of applying the most recent edition of the references listed below.

A list of currently valid Broadband Forum Technical Reports is published at www.broadband-forum.org.

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
<th>Source</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] RFC 2119</td>
<td>Key words for use in RFCs to Indicate Requirement Levels</td>
<td>IETF</td>
<td>1997</td>
</tr>
</tbody>
</table>

2.3 Definitions

The following terminology is used throughout this Abstract Test Plan.

Ethernet Traffic Generator
A device that generates and captures well formed Ethernet frames as defined by test personnel.

GEM Port
An abstraction on the GTC adaptation sublayer representing a logical connection associated with a specific client traffic flow. The GTC adaptation sublayer is a sublayer of the GPON Transmission Convergence layer that supports the functions of user data fragmentation and de-fragmentation, GEM encapsulation, GEM frame delineation, and GEM Port-ID filtering.

GEM Port Id
A 12-bit value which is assigned by the OLT to the individual logical connections transported over the GPON interface and which is carried in the header of all the GEM frames associated with the given logical connection.

GPON Analyzer
An external device, which may be included in a non-intrusive manner, between the R/S and S/R-interfaces to capture and analyze the traffic present in the ODN.

GPON Network
An OLT connected using an Optical Distribution Network (ODN) to one or more ONUs or ONTs. A GPON network is a subset of the Access Network.

ODN
Optical Distribution Network including the fibers, splitters and connectors.

OLT
Optical Line Termination (OLT): A device that terminates the common (root) endpoint of an ODN, implements a PON protocol, such as that defined by G.984, and adapts PON PDUs for uplink communications over the provider service interface. The OLT provides management and maintenance functions for the subtended ODN and ONUs.

OLT Emulator
A device that terminates the common (root) endpoint of an ODN, implements the G.984/G.987 PMD and TC layers, and supports the transmission of OMCI messages as defined in the messages sequences in this document.

ONU
Optical Network Unit (ONU): A generic term denoting a device that terminates any one of the distributed (leaf) endpoints of an ODN, implements a PON protocol, and adapts PON PDUs to subscriber service interfaces.
ONU/L2
A generic term denoting a Layer-2 device that terminates any one of the distributed (leaf) endpoints of an ODN, implements a PON protocol, and adapts PON PDUs to subscriber service interfaces. An ONU, within the context of TR-156, does not include any Layer-3 (IP router) functions.

ONU/RG
An ONU (as defined above) that includes additional Layer-3 (IP routing) functionality as defined as “RG” below. The connection between the ONU subcomponent and RG subcomponent is made through a VEIP managed entity.

RG
A Residential Gateway is a device that interfaces between the WAN and LAN IP environment for a consumer broadband customer. It may route or bridge traffic, depending on its configuration and specifications.

T-CONT
A traffic-bearing object within an ONU that represents a group of logical connections, is managed via the ONU Management and Control Channel (OMCC), and is treated as a single entity for the purpose of upstream bandwidth assignment on the PON.

Traffic Flow
A sequence of frames or packets traversing a particular reference point within a network that share a specific frame/packet header pattern. For example, an Ethernet traffic flow can be identified by any combination of specific source MAC address, destination MAC, VLAN ID, 802.1p bits, etc.

Traffic Classes (TC)
Traffic Classes are the set of upstream and downstream supported forwarding behaviours in the network element.

U-interface
U-interface is a short form of expressing one or more of the interfaces defined in this Other Document or in TR-101 at the U reference point. It is also essentially equivalent to a subscriber-facing interface at the access node.

V-interface
V-interface is a short form of expressing one or more of the interfaces defined in TR-101 at the V reference point. It is also essentially equivalent to a network-facing interface at the access node.

XGEM Port
An abstraction on the XGTC adaptation sublayer representing a logical connection associated with a specific client traffic flow. The XGTC adaptation sublayer is a sublayer of the XG-PON1 Transmission Convergence layer that supports the functions of user data fragmentation and de-fragmentation, XGEM encapsulation, XGEM frame delineation, and XGEM Port-ID filtering.

XGEM Port Id
A 16-bit value which is assigned by the OLT to the individual logical connections transported over the XG-PON1 interface and which is carried in the header of all the XGEM frames associated with the given logical connection.
2.4 Abbreviations

This Abstract Test Plan uses the following abbreviations:

- **ADSL**: Asymmetric Digital Subscriber Line
- **AES**: Advanced Encryption Standard
- **AN**: Access Node
- **ASP**: Application Service Provider
- **ATM**: Asynchronous Transfer Mode
- **BTS**: Base Transceiver Station
- **CB**: Cellular Backhaul
- **CPE**: Customer Premises Equipment
- **CPN**: Customer Premises Network
- **DPU**: Distribution Point Unit
- **DSCP**: DiffServ Code Point
- **DSL**: Digital Subscriber Line
- **FE**: Fast Ethernet (100Mbps)
- **FITH**: Fiber into the Home
- **FTTC**: Fiber to the Curb
- **FTTH**: Fiber to the Home
- **FTTO**: Fiber to the Office
- **FTTP**: Fiber to the Premises, including buildings
- **GE**: Gigabit Ethernet (1000Mbps)
- **GEM**: Generic Encapsulation Method
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>GPON Physical Media layer</td>
</tr>
<tr>
<td>GPON</td>
<td>Gigabit-capable Passive Optical Network</td>
</tr>
<tr>
<td>L2-OCM</td>
<td>Layer 2 OMCI Common Model</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MDU</td>
<td>Multi-Dwelling Unit</td>
</tr>
<tr>
<td>ME</td>
<td>Managed Entity</td>
</tr>
<tr>
<td>MTU</td>
<td>Multi-Tenant Unit – or Maximum Transmission Unit</td>
</tr>
<tr>
<td>NSP</td>
<td>Network Service Provider</td>
</tr>
<tr>
<td>ODN</td>
<td>Optical Distribution Network – as defined in G.984.1 for GPON and G.987.1 for XG-PON1</td>
</tr>
<tr>
<td>OLT</td>
<td>Optical Line Termination – as defined in G.984.1 for GPON and G.987.1 for XG-PON1</td>
</tr>
<tr>
<td>OMCI</td>
<td>ONU Management and Control Interface</td>
</tr>
<tr>
<td>ONT</td>
<td>Optical Network Termination – as defined in G.984.1 for GPON and G.987.1 for XG-PON1</td>
</tr>
<tr>
<td>ONU</td>
<td>Optical Network Unit – as defined in G.984.1 for GPON and G.987.1 for XG-PON1</td>
</tr>
<tr>
<td>POTS</td>
<td>Plain Old Telephone Service</td>
</tr>
<tr>
<td>RBN</td>
<td>Regional Broadband Network</td>
</tr>
<tr>
<td>RG</td>
<td>Residential Gateway</td>
</tr>
<tr>
<td>RNC</td>
<td>Radio Network Controller</td>
</tr>
<tr>
<td>SFU</td>
<td>Single Family Unit – a type of residence</td>
</tr>
<tr>
<td>SFP</td>
<td>Small Form Factor Pluggable device</td>
</tr>
<tr>
<td>TDM</td>
<td>Time-Division Multiplexing</td>
</tr>
<tr>
<td>TLS</td>
<td>Transparent LAN Service – a common synonym for Business Ethernet Services</td>
</tr>
</tbody>
</table>
TR Technical Report

VDSL Very high speed Digital Subscriber Line

xDSL Any variety of DSL

XG-PON 10-Gigabit-capable passive optical network

XGTC XG-PON1 Transmission Convergence layer – as defined in G.987.3 [13]
3 Abstract Test Plan Impact

3.1 Energy Efficiency

ATP-247 has no impact on Energy Efficiency.

3.2 IPv6

ATP-247 has no impact on IPv6.

3.3 Security

ATP-247 has no impact on Security.

3.4 Privacy

Any issues regarding privacy are not affected by ATP-247.
4 Test Methodology

The implementers of this test plan are expected to adhere to a set of requirements that provide uniformity of test configurations and equipment across multiple test venues. The following subsections define these requirements.

4.1 Standards Conformance Testing

Conformance testing is intended to verify a specific implementation of an ONU, including the OMCI stack and configuration engines, is compliant with requirements of the specification. Within conformance testing, only the unit under test and any necessary test tools shall be connected to the ODN, as defined below in 4.3.5. It is recommended that the sequence of test cases in a conformance test be randomized such that the sequence of test cases varies between test sessions. It is also recommended that the ONU be reset to its factory default configuration between each test case.

4.2 ONU Testing Requirements

The certification program described in the present document applies to integrated ONU devices of the following types:
- Single User Port ONU/L2
- Multiple User Port ONU/L2
- Multi-managed ONUs
 - Residential Gateway ONU (ONU/RG)
 - SFP ONU (ONU/SFP)
 - PON fed VDSL2 DPU ONU (VDSL2 DPU/ONU),

These ONU types are further discussed and defined in Sections 4.2.2 and 4.2.3, respectively. It may be possible to specify and test other ONU device types, however at this time, those device types are out of scope of the certification program.

4.2.1 ONU Clean-slate Requirements

Unless explicitly stated in each test case, the ONU must be returned to a “clean-slate” state before the beginning of each test run. Such clean-slate state may either be achieved through the following steps:

1. The ONU under test is connected to ODN and powered up.
2. The ONU is activated by the OLT Emulator, ranged, and a GEM port for OMCI is created as a result of ONU-ID assignment.
3. The OLT Emulator instructs the ONU to reset its MIB to factory default values.
Or by any mean specific to the ONU.

Note that these steps may be redundant with the first steps of a given test-case configuration: in such a case, they need not be repeated. It is also assumed that the testing equipment (OLT emulator, analyzers, etc.) has been powered up, connected to the ODN, and is configured such that it can perform the actions ascribed to it in the current test — how this is achieved, provided that the OLT emulator and GPON analyzer abide by the requirements defined in their respective sections (OLT emulator requirements and GPON analyzer requirements), is irrelevant. In particular, The OLT emulator may perform MIB uploads in order to obtain a precise knowledge of the actual state of the ONU.

Unless explicitly stated, identical steps may not be shared between test runs, and any given test must be run from start (including a return to its required pre-existing state, be it the defined clean-slate state or otherwise stated) to its end independently.

4.2.2 ONU/L2

An integrated ONU/L2 device is an ONU integrating and implementing Ethernet type user interface connections (that is, the U-interface of TR-156 [3]) that operates exclusively on and below Layer 2 of the protocol stack. In particular, an ONU/L2 excludes any IP routing or NAT functionality. To be certified, an ONU/L2 MUST successfully complete all mandatory and conditional test cases for each applicable profile. The applicable profiles, with the exception of the baseline profile, are selected by the manufacturer and communicated to the test laboratory prior to the start of testing. All ONU/L2 devices under certification must support the Baseline Profile requirements.

Note that a Single User Port ONU/L2 MUST successfully completes all mandatory and conditional test cases for Single User Port, whereas Multiple User Ports ONU/L2 MUST successfully completes all mandatory and conditional test cases for Multiple User Ports.

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Test Requirement(s)</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONU.6.1.1</td>
<td>Single Untagged U-Interface</td>
<td>R-10, R-11, R-19</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.2</td>
<td>Single U-interface with symmetric VLAN tag translation</td>
<td>R-12, R-13, R-19</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.3</td>
<td>Deriving P-bits as a function of received P-bits (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.13</td>
<td>VID Support for Untagged Frames (N:1 VLAN or 1:1 VLAN Single Tagged at the V Interface)</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Name</td>
<td>Test Requirement(s)</td>
<td>Test Type</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ONU.6.1.1</td>
<td>Single Untagged U-Interface</td>
<td>R-20, R-21, R-31</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.2</td>
<td>Single U-interface with symmetric VLAN tag translation</td>
<td>R-22, R-23, R-31</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.3</td>
<td>Deriving P-bits as a function of received P-bits (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.13</td>
<td>VID Support for Untagged Frames (N:1 VLAN or 1:1 VLAN Single Tagged at V Interface)</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.14</td>
<td>VID Support for Untagged Frames (1:1 VLAN Architecture Double Tagged at V-Interface)</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.15</td>
<td>VID Support for Priority Tagged Frames with Priority Preservation (N:1 VLAN or 1:1 VLAN Single-Tagged at V Interface)</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.16</td>
<td>VID Support for Priority Tagged Frames without Priority Preservation (N:1 VLAN or 1:1 VLAN Single-Tagged at V Interface)</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Test Number</td>
<td>Test Name</td>
<td>Test Requirement(s)</td>
<td>Test Type</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ONU.6.1.17</td>
<td>VID Support for Priority Tagged Frames with Priority Preservation</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td></td>
<td>(1:1 VLAN Architecture Double-Tagged at the V Interface)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONU.6.1.18</td>
<td>VID Support for Priority Tagged Frames without Priority Preservation</td>
<td>R-9</td>
<td>Mandatory</td>
</tr>
<tr>
<td></td>
<td>(1:1 VLAN Architecture Double-Tagged at the V Interface)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONU.6.1.19</td>
<td>ONU addition and removal of C-Tag for 1:1 VLANs</td>
<td>R-20, R-21</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.20</td>
<td>ONU addition and removal of S-Tag for 1:1 VLANs</td>
<td>R-20, R-21</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.21</td>
<td>ONU translation between Q-Tag and C-Tag for 1:1 VLANs</td>
<td>R-22, R-23</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.22</td>
<td>ONU translation between Q-Tag and S-Tag for 1:1 VLANs</td>
<td>R-22, R-23</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU 6.1.25</td>
<td>Deriving P-bits as a function of received VID for a 1:1 or N:1 architecture (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU 6.1.26</td>
<td>Deriving P-bits as a function of received Ethertype for a 1:1 or N:1 architecture (single user port).</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU 6.1.27</td>
<td>Deriving P-bits as a function of received user port for a 1:1 or N:1 architecture (multiple user ports).</td>
<td>R-48</td>
<td>Conditionally Mandatory</td>
</tr>
</tbody>
</table>

Table 4-3: Profile C – VBES VLAN Architecture

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Test Requirement(s)</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONU.6.1.4</td>
<td>Addition of an S-Tag in the Upstream Direction in a VBES Architecture</td>
<td>R-34</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.5</td>
<td>Validation of an S-Tag in the Upstream Direction in a VBES Architecture</td>
<td>R-35</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.6</td>
<td>Translation of an S-Tag in the Upstream Direction in a VBES Architecture</td>
<td>R-35, R-42</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.7</td>
<td>Removal of an S-Tag in the Downstream Direction in a VBES Architecture</td>
<td>R-36</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.8</td>
<td>Translation of an S-Tag in the Downstream Direction in a VBES Architecture</td>
<td>R-43</td>
<td>Mandatory</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>ONU-6.1.10</td>
<td>Deriving P-bits as a function of received VID (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.11</td>
<td>Deriving P-bits as a function of received Ethertype (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.1.12</td>
<td>Deriving P-bits as a function of received user port (multiple user ports)</td>
<td>R-48</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU 6.1.24</td>
<td>Deriving P-bits as a function of received P-bits for a VBES architecture (single user port)</td>
<td>R-48</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU 6.2.3</td>
<td>Mapping Traffic from GEM Ports to U Interface in Downstream Direction in a VBES Architecture</td>
<td>R-41</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

Table 4-4: Profile D – Multicast Operations

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Test Requirement(s)</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONU.6.3.1</td>
<td>ONU passing of downstream IGMP messages</td>
<td>R-81</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.3</td>
<td>ONU silent discarding of IGMPv1 messages</td>
<td>R-98</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.5</td>
<td>Marking Upstream IGMP Messages with Ethernet P-Bits</td>
<td>R-94</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.6</td>
<td>IGMP controlled Multicast</td>
<td>R-74, R-79</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.7</td>
<td>Multicast While List</td>
<td>R-76, R-84</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.8</td>
<td>IGMP rate limit</td>
<td>R-87</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.9</td>
<td>IGMP Immediate leave</td>
<td>R-91</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.10</td>
<td>Maximum number of multicast flows</td>
<td>R-97</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.11</td>
<td>IGMP transparent Snooping</td>
<td>R-88, R-89, R-90</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.3.12</td>
<td>Multicast VLAN membership based on user ports (Multiple User ports)</td>
<td>R-96</td>
<td>Conditionally Mandatory</td>
</tr>
</tbody>
</table>
Table 4-5: Baseline Test Cases

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Name</th>
<th>Test Requirement(s)</th>
<th>Test Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONU.6.3.13</td>
<td>IGMP transparent Snooping (Multiple User ports)</td>
<td>R-88, R-89, R-90</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU 6.3.14</td>
<td>IGMP Transparent forwarding</td>
<td>R-10, R-19, R-82</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.4.1</td>
<td>Downstream Broadcast Handling, Single U-interface</td>
<td>R-113</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.4.2</td>
<td>Downstream Broadcast Handling, Multiple U-interfaces</td>
<td>R-113</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.6.1</td>
<td>2000-Byte Frames Supported by the ONU</td>
<td>R-4</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.7.1</td>
<td>Local setting of a registration ID at the ONU (ONU retains the Registration ID indefinitely)</td>
<td>R-152, R-153</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.8.1</td>
<td>New ONU Bring-up method on new ONU</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.8.2</td>
<td>New ONU Bring-up method for old ONU</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.8.3</td>
<td>Old ONU Bring-up method for ONU</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.8.4</td>
<td>New ONU Bring-up method for new ONU with encrypted OMCC</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.9.1</td>
<td>Alarm synchronization</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.9.2</td>
<td>MIB synchronization: Correct Data Sync</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.9.3</td>
<td>MIB synchronization: MIB Upload</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.1</td>
<td>Software Image Download, multiple window sizes, padded final window</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.2</td>
<td>Software Image Download, shortened final window final window</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.3</td>
<td>Failed Software Image Download, missing section</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.4</td>
<td>Failed Software Image Download, incorrect section CRC</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.5</td>
<td>Failed Software Image Download, incorrect software image CRC</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>ONU.6.10.7</td>
<td>Activate uncommitted software image</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.10.8</td>
<td>Commit software image</td>
<td>G.988 Appendix I</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.11.3</td>
<td>Cardholder or port mapping package for integrated ONU</td>
<td>G.988 Appendix I</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.1</td>
<td>Single U-interface with multiple downstream GEM ports</td>
<td>R-19, R31, R-41</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.2</td>
<td>User Isolation on ONU Devices with Multiple U-Interfaces</td>
<td>R-3 (TR-101 R-40)</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.4</td>
<td>Mapping traffic into GEM Ports based on P-bit values in the upstream direction (single user port)</td>
<td>R-51, R-52, R-53</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.5</td>
<td>Mapping traffic into GEM Ports based on VID values in the upstream direction (single user port)</td>
<td>R-51, R-52, R-53</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.6</td>
<td>Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (single user port)</td>
<td>R-51, R-52, R-53</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.7</td>
<td>Mapping traffic into GEM Ports based on P-bit values in the upstream direction (multiple user port)</td>
<td>R-51, R-52, R-53</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.8</td>
<td>Mapping traffic into GEM Ports based on VID values in the upstream direction (multiple user port)</td>
<td>R-51, R-52, R-53</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.9</td>
<td>Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (multiple user port)</td>
<td>R-51, R-52, R-53</td>
<td>Conditionally Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.10</td>
<td>Mapping multiple P-bit values to the same GEM port (single user port)</td>
<td>R-51</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.12</td>
<td>Strict priority downstream scheduling among 4 queues on ONU</td>
<td>R-56, R-63, R-64</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.13</td>
<td>Indicating drop precedence using P-bits upstream</td>
<td>R-54</td>
<td>Mandatory</td>
</tr>
<tr>
<td>ONU.6.2.14</td>
<td>Indicating drop precedence using DEI bit upstream</td>
<td>R-55</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>
4.2.3 Multi-managed ONU

Multi-managed ONUs are devices integrating both an OMCI management domain and at least one or more non-OMCI management domains (like TR-069, SNMP, etc).

In such multi-managed ONU types, the U-interface is virtualized as the Virtual Ethernet Interface Point (VEIP) which represents the data plane hand-off point to the non-OMCI management domain(s). This point is however not directly accessible externally, and the certification program supports only the implementations in which at least one association between Ethernet UNI and VEIP is maintained by default (which means one VEIP per non-OMCI management domain). Whereas other possible implementations than VEIPs may exist for that purpose (the use of the IPhost OMCI object and freely associated PPTP Ethernet UNIs is possible when a separate IP management domain is present), testing of such other implementations is not covered in the present document and is for further study.

Multi-managed ONU devices covered in the present document are:
- Residential Gateway ONU (ONU/RG), see § 4.2.3.1 specific requirements
- Small Form Factor Pluggable ONU (SFP/ONU) and its related system under test, see §4.2.3.2 for specific requirements
- PON fed VDSL2 Distribution Point Unit ONU (VDSL2 DPU/ONU) and its related system under test, see § 4.2.3.3 for specific requirements

Each of these ONU devices and their related system under test may be either with a single VEIP or multiple VEIPs, except in the SFP/ONU case where the system under test (the SFP/ONU plus the Host device) is expected to be with a single VEIP only.

To be certified, a multi-managed ONU MUST successfully complete all mandatory and conditional test cases for each applicable profile. Available profiles are identical to those defined above for the ONU/L2 type. The applicable profiles tested, with the

ONU.6.2.15	Indicating drop precedence using P-bits downstream	R-54	Mandatory
ONU.6.2.16	Indicating drop precedence using DEI bit downstream	R-55	Mandatory
ONU.6.2.19	Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction	R-19, R-31, R-41	Conditionally Mandatory
ONU.6.2.21	Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction	R-19, R-31, R-41	Conditionally Mandatory
exception of the baseline profile, are selected by the manufacturer and communicated to the approved test laboratory prior to the start of testing. All multi-managed ONU devices under certification MUST support the Baseline Profile requirements.

In order to be applicable to multi-managed ONUs, the ATP-247 test cases require textual modifications of their OMCI message sequences. Each OMCI test script differs indeed from the scripts used for testing ONU/L2 devices in the following ways:

1. All references to the PPTP Ethernet ME are changed to the VEIP ME. This largely includes changing the bridge-port configuration data and extended VLAN tagging configuration data OMCI commands and associations.
2. The unlocking operation at the end of each script should apply to the VEIP rather than to the PPTP Ethernet Port.

All applicable and required OMCI message sequences, including the modified sequences for the testing of multi-managed ONUs, are referenced in the Annex B: of the present document.

The certification program supports only ONU implementations (and their related system under test) that do not require provisioning of IP parameters via OMCI. To simplify the testing and remove the necessity of the inclusion of IP information in test packets, all multi-managed ONU and its associated system under test MUST support and allow the implementation of at least one of the following modes:

Mode 1
A pure bridging mode, where all packets are forwarded between the physical user-facing Ethernet ports of the system under test and the VEIP point, regardless of VLAN tagging, P-bit value, etc.

Mode 2
A stripped mode, where a physical Ethernet user-facing port of the system under test receives only untagged Ethernet frames, and where it is the responsibility of the internal non-OMCI management domain of the system under test to perform the correct tag addition or manipulation so that the traffic at the VEIP point equals the traffic at the U interface as defined for each test-case.

4.2.3.1 Residential Gateway ONU (ONU/RG)
An integrated ONU/RG device is an ONU that combines the Layer 2 functionality with that of the residential gateway. The certification program supports only the ONU/RG device implementations that do not require provisioning of IP parameters via OMCI.

To meet the requirements of mode 2, the internal RG device MUST/SHOULD support the following requirements from TR-101 [6]:

© The Broadband Forum. All rights reserved
TR-101 Requirements

- **R-01** The RG MUST support sending the following frame types: untagged frames, priority-tagged frames and VLAN-tagged Ethernet frames in the upstream direction for stacks a, b, e, f and g in Figure 4 [of TR-101].
- **R-02** The RG used to support business customers SHOULD support sending double-tagged Ethernet frames in the upstream direction for stacks a, b, e, f and g in Figure 4 [of TR-101].
- **R-03** The RG MUST support setting the priority tag and VLAN ID values.
- **R-04** The RG MUST support receiving untagged and VLAN tagged Ethernet frames in the downstream direction, and MUST be able to strip the VLAN tagging from the ones received with tags.

4.2.3.2 Small Form Factor Pluggable ONU (SFP/ONU)

SFP/ONUs are ONU devices whose purpose is to be hosted within L2 switch or L3 router devices and which cannot be tested alone as such. The testing of SFP/ONUs MUST therefore be done along with the use of a host device specified by the manufacturer and communicated to the approved test laboratory prior to the start of testing. The system under test will thus result in the combination of the SFP/ONU and its host device. The model part number and all relevant HW and SW references of the hosting device will be reported by the approved test laboratory in the test report along with the related SFP/ONU information.

Host devices may be of great variety and of different natures, making the entire system under test be potentially assimilated to an already covered type of ONUs: for instance, the SFP/ONU and its host may result into an ONU/RG, or into a xDSL DPU/ONU. In such case, the requirements of the equivalent ONU type then applies to the system under test composed of the SFP/ONU and its host device.

The certification program supports only implementations (SFP/ONU device and its host) where the host does not require any provisioning via OMCI.

4.2.3.3 PON fed VDSL2 Distribution Point Unit ONU (VDSL2 DPU/ONU)

VDSL2 DPU/ONU devices are integrated PON-fed (G-PON or XG-PON1) VDSL2 access equipments (DSLAMs) that combine a PON ONU entity along with a VDSL2 access node entity. In such case, the IR-247 test setup MUST include an active VDSL2 link from the VDSL2 DPU/ONU to the VDSL2 end-user CPE, the system under test resulting in the combination of the VDSL2 DPU/ONU itself plus a VDSL2 CPE with an active VDSL2 link. It is of responsibility of the manufacturer in accordance with the approved test laboratory to make a proper choice of the VDSL2 CPE hardware & software, as well of the VDSL2 link configuration used during the certification tests. The VDSL2 configuration information MUST be reported by the approved test laboratory in the test report in order to allow the IR-247 tests be re-executed in the same configuration. Such information MUST include all needed
VDSL2 parameters such as Band Profiles and Line Settings, including parameters among with: used G.993.2 annex, band plans, US0 band, PSD mask, spectrum/service profiles, UPBO/DPBO, latency, INP. Further information might be reported as necessary to allow the testing being reproduced, and settings examples can be taken from the section 6.2 of the BBF TR-114 isse 2 test plan [10].

Special care in the elaboration and choice of the VDSL2 link must be taken as this additional link might be of great influence upon the IR-247 tests. Especially, manufacturer in accordance with the approved test laboratory MUST define the VDSL2 settings so that it does not preclude the succesfull execution of the IR-247 test plan.

The certification program supports only implementations of VDSL2 DPU/ONUs and their related system under test which support the following requirements from TR-167:

TR-167 Requirements
- **R-68** All the configurable features of the GPON ONU entity defined in this Technical Report MUST only be managed via the OLT using OMCI and PLOAM as per G. 984
- **R-69** The GPON ONU entity MUST allow the TR-101 access node entity to be managed by a protocol other than OMCI independent of the OLT (see Figure 1)

An entity description is given in the Figure 1 from TR-167 issue 2 [11]

![Network Architecture Diagram](image)

Figure 1 – Network architecture for Ethernet-based GPON aggregation (TR-167 issue 2 [11])
4.3 Test Setup

4.3.1 OLT Emulator Requirements

The OLT Emulator is required to perform conformance testing of ONU devices and takes the place of the OLT. The OLT Emulator must meet the following minimum requirements. Before commencement of the testing involving an OLT emulator, each participating ONU manufacturer will be given an opportunity to verify the OLT emulator conformance with the GTC layer requirements to the extent required to conduct testing. It is expected that any claims of the OLT emulator non-conformance respectively with G.984.3 [4] for GPON and G.987.3 [13] for XG-PON1 will be investigated by an ad-hoc committee composed of the emulator vendor, the ONU vendor, and three third party GTC layer experts.

R-1 The OLT emulator MUST conform, within the scope of ONU activation, OMCI channel establishment, upstream bandwidth assignment, point-to-multipoint communication and encryption mechanisms, for GPON to the GPON Transmission Convergence layer requirements, specified in ITU-T Recommendation G.984.3[4] (2008), for XG-PON1 to the XG-PON1 Transmission Convergence layer requirements specified in ITU-T Recommendation G.987.3 (2010) within the scope of ONU activation, OMCI channel establishment, upstream bandwidth assignment, and point-to-multipoint communication within the scope of ONU activation, OMCI channel establishment, upstream bandwidth assignment, and point-to-multipoint communication.

R-2 The OLT emulator SHOULD recognize and handle gracefully any GTC layer features that it does not support.

R-3 The OLT Emulator MUST support generation, transmission, and reception of OMCI messages, according to the Appendix I and II of G.988 [2].

R-4 The OLT Emulator MUST support transmission and reception of Ethernet frames encapsulated within GEM frames.

R-5 The OLT emulator MUST provide a user interface that allows the tester to monitor OMCI messages and Ethernet/GEM frames and their content. This interface MUST provide a log capability of the executed test case.
R-6 The OLT Emulator MUST support generation of PLOAM messages to activate and configure the OMCC GEM port and at least 6 other GEM ports for user traffic, and provide ONU with an active upstream timeslot for any activated T-CONTs (including the one used for the OMCC).

R-7 The OLT Emulator MUST act as the OMCI master.

R-8 The OLT Emulator SHOULD transmit an OMCI command 3 times before declaring the ONU failed for lack of response.

R-9 The OLT Emulator SHOULD provision allocations for T-CONTs prior to the start of the message sequence defined for each test case.

R-10 Verification by the OLT emulator of the consistency of the MIB held in the ONU and the MIB held in the OLT emulator MUST be performed using either one of the following two methods on the OLT emulator:

- via requesting a full MIB upload to the ONU under test, or
- via performing Get Requests on Manage Entities to the ONU under test upon specific attributes of the ONU MIB.

In any of the above retrieval methods, only these parts of the ONU MIB being modified by the OLT emulator during the test case MUST be verified for consistency.

A MIB consistency check MUST be considered as successful only when all these modified attributes have been checked consistent with the MIB held in the OLT emulator.

In respect to R-1:
- for G-PON ONUs, the activation process is specified in G.984.3 [4] Annex A, and encryption mechanisms in G.984.3 [4] section 12.2 (Encryption system) and G.984.3 [4] section 12.3 (Key exchange and switch-over)
- for XG-PON1 ONUs, the activation process is specified in G.987.3 [13] section 12 (ONU Activation) and encryption mechanisms in G.987.3 [13] section 15.5 (Data encryption key exchange and activation mechanism)

4.3.2 GPON Analyzer Requirements

The G-PON Analyzer is an optional piece of equipment, which may be included in the ODN during conformance or interoperability testing to capture and analyze the traffic present on that network.

R-11 The GPON Analyzer MUST NOT alter, correct, or otherwise disturb any of the traffic present on the ODN.
R-12 The GPON Analyzer MUST NOT significantly attenuate the optical signals such that the requirements of G.984.2 [5] for GPON, G.987.2 [13], for XG-PON cannot be met.

4.3.3 Optical Distribution Network Requirements
The optical distribution network is outside of the scope of this test plan, however, care should be taken to ensure each optical transceiver is operating in roughly the mid-point of its dynamic range as defined respectively in G.984.2 [5] and G.987.2 [12] for GPON and XG-PON1; ensuring the receiver is not operating in a stressed mode, which could cause bit errors. This may be accomplished using either real fiber or an optical attenuator.

4.3.4 Unit under Test Management Interface Requirements
R-13 All configurations done on the ONU under test for the purpose of executing the test cases specified in this document MUST be performed using a G.988 [3] compliant management interface.

4.3.5 Selection of Random Values Used in Test Cases
Many of the test cases defined in section 6 require the tester to select random values for attributes such as VID, P-bits, and GEM ports. To ensure a wide coverage of the possible value range of each attribute type, the tester must select the values in a way that provides for testing the entire value range of the attribute value being selected. For example, VID values should be selected from across the entire range of 0 – 4094. This will not only verify the flexibility of the unit under test but will also specifically address the following requirement from TR-156 [3].

- TR-156 R-8: The ONU and OLT MUST support all VID values from the range: 1-4094 as specified in IEEE 802.1Q, on all ports

R-14 The selection of random values for attributes used in the test cases MUST be performed such that the values are distributed across the possible range for each attribute. This MUST include the minimum, maximum and median values for the attribute. This requirement applies to the entirety of the test cases and is not intended to be a requirement for each test case.
4.3.6 ONU Conformance Test Setup

The figures below show the basic test setup used when the unit under test is an ONU. A specific test case may include an additional figure to further refine the test setup by including additional information and parameters such as, and not limited to, VLAN tags, priority bits, etc.

![Basic test setup for ONU conformance testing](image)

Figure 2 - Basic test setup for ONU conformance testing
Figure 3 – Basic test setup for multiple subscriber ONU
5 Test Case Summary
Refer to tables within Section 4.2 ONU Testing Requirements.

6 ONU Conformance Tests
The following conformance tests verify:
- Compliance to the requirements of TR-156 [3].
- The implementation of TR-156 requirements on the ONU under test has followed the guidelines found in G.988 [2] Appendix I and II.

Each test case identifies the specific TR-156 [2] requirements that it addresses but not the specific clauses of G.988 [2] because Appendix I and Appendix II are both written as informative rather than normative text.

The following conditions apply to all test cases unless expressly stated otherwise:
- The EtherType of all frames is 0x0800
- All test cases that involve multicast assume proxy snooping for IGMP v3 in the ONU under test.
- Each variable in test cases that contain multiple VID or P-bit variables must be set to unique values.
6.1 Classification and Tagging

6.1.1 Single untagged U-interface

Test Name
Single untagged U-interface

Test Definition ID
ONU.6.1.1

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-10** The ONU MUST support adding an S-Tag to upstream untagged traffic received from the U-interface.
- **R-11** The ONU MUST support removing an S-Tag from downstream traffic received from the OLT.
- **R-19** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction.
- **R-20** The ONU MUST support adding a C-Tag or S-Tag to upstream untagged traffic.
- **R-21** The ONU MUST support removing the tag from downstream traffic.
- **R-31** The ONU MUST support mapping traffic from one or more GEM Ports to a U interface in the downstream direction.
Test Objective
The purpose of this test is to verify the ONU’s OMCI implementation, MAC bridge, and filter tables support the minimum functionality to configure a single U-interface on the ONU to pass untagged traffic across the U-interface. This test verifies both the OMCI configuration responses and support of active user traffic. The VLAN S-Tag is added to upstream traffic by the ONU before crossing the R/S-interface and removed from the downstream traffic by the ONU before crossing the U-interface.

Test Configuration
1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The Ethernet Traffic Generator should be configured to transmit Ethernet frames upstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>Traffic Stream</th>
<th>UNI MAC DA MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype IP DA IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>1 MAC1 MAC2 n/a n/a n/a n/a n/a n/a x x x n/a n/a n/a n/a 0x88A8 0 x SVID1 GEM1 TCONT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>1 MAC3 MAC4 n/a n/a n/a n/a 0x8100 x x Any CVID x x x -- -- -- -- -- -- -- -- -- -- --</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>1 MAC5 MAC6 n/a n/a n/a n/a 0x88A8 x x Any SVID x x x -- -- -- -- -- -- -- -- -- -- --</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. The OLT Emulator should be configured to transmit Ethernet frames downstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>Traffic Stream</th>
<th>MAC DA MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype IP DA IP SA</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>MAC2 MAC1 n/a n/a n/a n/a n/a 0x88A8 0 x SVID1 x x x n/a n/a n/a n/a n/a n/a n/a 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Only 1 user traffic class should be configured on the ONU (via defined OMCI messages below), requiring 1 GEM port (Alloc-ID, T-CONT, Port-ID).
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
No MAC filtering should be enabled on the ONU during these tests, or it should be configured to allow the test user traffic to pass through the ONU.
6.1.2 Single U-interface with symmetric VLAN tag translation

Test Name
Single U-interface with symmetric VLAN tag translation

Test Definition ID
ONU.6.1.2

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-12 The ONU MUST support unique, symmetric translation of Q-Tag VIDs received from the U-interface into S-Tag VIDs.
- R-13 The ONU MUST support unique, symmetric translation of the S-Tag VIDs used in the downstream-tagged traffic into the Q-Tag VIDs sent to the U-interface.
- R-19 The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction.
- R-22 The ONU MUST support VID translation of the Q-Tag received from the U interface into the C-Tag or S-Tag for upstream-tagged traffic.
- R-23 The ONU MUST support VID translation of the tag used in the downstream-tagged traffic into the Q-Tag sent to the U interface.
• **R-31** The ONU MUST support mapping traffic from one or more GEM Ports to a U interface in the downstream direction.

Test Objective
The purpose of this test is to verify the ONU’s OMCI implementation, MAC bridge, and filter tables support the minimum functionality to configure a single U-interface on the ONU to pass tagged traffic across the U-interface, while translating the VID values present on the U and R/S-interfaces. This test verifies both the OMCI configuration responses and support of active user traffic. In the upstream direction, tagged traffic with VID1 received over the U-interface is transmitted over the R/S-interface with VID2. In the downstream direction, tagged traffic with VID2 received over the R/S-interface is transmitted over the U-interface with VID1. No further changes to the Ethernet frame are permitted, including changes to P-bit values, etc.

Test Configuration
1. ONU is powered and connected to ODN.
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The Ethernet Traffic Generator should be configured to transmit Ethernet frames upstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPBits</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>1 MAC1</td>
<td>MAC3</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>1 MAC1</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>1 MAC1</td>
<td>MAC5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

5. The OLT Emulator should be configured to transmit Ethernet frames downstream with the following parameters:
6. Only 1 user traffic class should be configured on the ONU (via defined OMCI messages below), requiring 1 GEM port (Alloc-ID, T-CONT, Port-ID).

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

No MAC filtering should be enabled on the ONU during these tests, or it should be configured to allow the test user traffic to pass through the ONU.
6.1.3 Deriving P-bits as a function of received P-bits (single user port)

Test Name
Deriving P-bits as a function of received P-bits (single user port).

Test Definition Number
ONU.6.1.3

Reference Document
BBF TR-156[3]
ITU-T G.988[2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:

- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Note: Only derivation from received P-bit markings is verified by this test case.

Also, R-6, 7, 46, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received P-bits.
Test Configuration

For this test, only a single user port is assumed.

ONU must be set-up with the standard L2-OCM (single user) with one upstream queues and one associated T-CONT. The intent of the test is to define two flows based on different P-bit values at the U-interface. Each flow will have an S-tag with a different P-bit value.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks

None
6.1.4 Addition of an S-Tag in the Upstream Direction in a VBES Architecture

Test Name
Addition of an S-Tag in the Upstream Direction in a VBES Architecture

Test Definition Number
ONU.6.1.4

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-34 The ONU MUST support adding an S-Tag in the upstream direction for Q-tagged, untagged, and priority-tagged frames

Test Objective
- Verify that the ONU supports adding an S-Tag in the upstream direction for Q-tagged, untagged, and priority-tagged frames

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames upstream with the following parameters (Stream 1):
4. The Ethernet Traffic Generator is configured to transmit priority tagged Ethernet frames upstream with the following parameters (Stream 2):
5. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream 3):

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>0x88A8</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>0x88A8</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC3</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>0x88A8</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
None
6.1.5 Validation of an S-Tag in the Upstream Direction in a VBES Architecture

Test Name
Validation of an S-Tag in the Upstream Direction in a VBES Architecture

Test Definition Number
ONU.6.1.5

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-35 Part 1: The ONU MUST support validating an S-Tag in the upstream direction for S-tagged frames

Test Objective
- Verify that the ONU supports validating an S-Tag in the upstream direction for S-tagged frames

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames upstream with the following parameters (Stream 1)

4. The Ethernet Traffic Generator is configured to transmit double-tagged Ethernet frames upstream with the following parameters (Stream 2)

5. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames upstream with the following parameters (Stream 3)

Upstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>SPbits1</td>
<td>0</td>
<td>SVID1</td>
<td>x</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>0x88A8</td>
<td>SPbits2</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
<td>0x88A8</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>SPbits2</td>
<td>x</td>
<td>0x8100</td>
<td>x</td>
<td>0x88A8</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.6 Translation of an S-Tag in the Upstream Direction in a VBES Architecture

Test Name
Translation of an S-Tag in the Upstream Direction in a VBES Architecture

Test Definition Number
ONU.6.1.6

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-35** Part 2: The ONU **MUST** support translating an S-Tag in the upstream direction for S-tagged frames
- **R-42** The ONU **MUST** support VID translation of the S-Tag received from the U-interface into a new S-Tag for upstream double-tagged traffic

Test Objective
- Verify that the ONU supports translating an S-Tag in the upstream direction for S-tagged frames

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames upstream with the following parameters (Stream 1)
4. The Ethernet Traffic Generator is configured to transmit double-tagged Ethernet frames upstream with the following parameters (Stream 2)
5. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames upstream with the following parameters (Stream 3)

<table>
<thead>
<tr>
<th>Traffic</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Interface</td>
<td>Port #</td>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
<td>Pbits</td>
<td>DEI</td>
<td>VID</td>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
<td>Pbits</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>SPbits1</td>
<td>x</td>
<td>SVID1</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x88A8</td>
<td>SPbits2</td>
<td>x</td>
<td>SVID2</td>
<td>0x8100</td>
<td>x</td>
<td>CVID2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>SPbits3</td>
<td>x</td>
<td>SVID3</td>
<td>x</td>
</tr>
</tbody>
</table>

Note: SVID3 and SPbits3 must not be configured as part of the VBES Service

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.7 Removal of an S-Tag in the Downstream Direction in a VBES Architecture

Test Name
Removal of an S-Tag in the Downstream Direction in a VBES Architecture

Test Definition Number
ONU.6.1.7

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-36** The ONU **MUST** support removing an S-Tag in the downstream direction

Test Objective
- Verify that the ONU supports removing an S-Tag in the downstream direction

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator is configured to transmit double-tagged Ethernet frames downstream with the following parameters (Stream 1)

4. The OLT Emulator is configured to transmit double-tagged Ethernet frames downstream with the following parameters (Stream 2)

5. The OLT Emulator is configured to transmit tagged Ethernet frames downstream with the following parameters (Stream 3)

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>UNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x88A8</td>
<td>SPbits1</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>CVID1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x88A8</td>
<td>SPbits2</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>SPbits3</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
None
6.1.8 Translation of an S-Tag in the Downstream Direction in a VBES Architecture

Test Name
Translation of an S-Tag in the Downstream Direction in a VBES Architecture

Test Definition Number
ONU.6.1.8

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-43** The ONU MUST support VID translation of the S-Tag received from the GPON interface into a new S-Tag for downstream double-tagged traffic sent to the U-interface

Test Objective
- Verify that the ONU supports VID translation of the S-Tag received from the GPON interface into a new S-Tag for downstream double-tagged traffic sent to the U-interface

Test Configuration
The same test configuration as used for 6.1.6 is used for this test but with the traffic running in the downstream direction:

1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.

3. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames downstream with the following parameters (Stream A)

4. The Ethernet Traffic Generator is configured to transmit double-tagged Ethernet frames downstream with the following parameters (Stream B)

<table>
<thead>
<tr>
<th>Stream</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>UNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x88A8</td>
<td>x</td>
<td>CVID1</td>
<td>x</td>
<td>x</td>
<td></td>
<td>0x8100</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x88A8</td>
<td>0x8100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x88A8</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
<td>x</td>
<td></td>
<td>0x8100</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x88A8</td>
<td>0x8100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.9 Test Case Reserved For Future Use
6.1.10 Deriving P-bits as a function of received VID (single user port)

Test Name
Deriving P-bits as a function of received VID (single user port).

Test Definition Number
ONU.6.1.10

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received VID.

Test Configuration
For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with three upstream queues and two associated T-CONTs. The intent of the test is to define two flows based on 2 different VID values at the U-interface. Each flow will have an S-tag added with a specified P-bit value.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0x88A8</td>
<td>SPbits1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0x88A8</td>
<td>SPbits2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.11 Deriving P-bits as a function of received Ethertype (single user port)

Test Name
Deriving P-bits as a function of received Ethertype (single user port).

Test Definition Number
ONU.6.1.11

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received Ethertype.

Test Configuration
For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with two upstream queues and two associated T-CONTs. The intent of the test is to define two flows based on different Ethertype values at the U-interface. (Ethertype=0x8863 is PPPoE; Ethertype=0x0800 is IPoE) Each flow will have an S-tag added with P-bit value different from the other flow.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>0x8100</td>
<td>0x8100</td>
<td>TCONT1</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x0800</td>
<td>0x8100</td>
<td>0x8100</td>
<td>TCONT2</td>
</tr>
</tbody>
</table>

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.12 Deriving P-bits as a function of received user port

Test Name
Deriving P-bits as a function of received user port (multiple user ports).

Test Definition Number
ONU.6.1.12

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description

TR-156
- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

 Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received user port.

Test Configuration
For this test, multiple user ports are assumed. Therefore multiple bridges must be provisioned in the OMCI model.

ONU must be set-up with the standard L2 OCM (multiple user port) with two upstream queues and two associated T-CONTs. The intent of the test is to define two streams per user ports. Each stream will have an S-tag added with P-bit value based on user port.

The U-interface and S/R interface values for each test are shown below, along with the GEM port and T-CONT configuration.

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Appendix B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
None
6.1.13 VID Support for Untagged Frames (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface)

Test Name
VID Support for Untagged Frames (N:1 VLAN or 1:1 VLAN Single-Tagged at the V Interface)

Test Definition Number
ONU.6.1.13

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-9 The ONU MUST support setting VID for untagged and priority tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

Test Objective
Verify that the ONU supports setting VID for untagged frames in the upstream direction based on EtherType, for N:1 VLAN or 1:1 VLAN single-tagged at the V-interface

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream A - IPv4)
4. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream B - PPPOE Discovery)
5. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream C - PPPOE Session)
6. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream D - ARP)

7. For N:1 VLAN or 1:1 VLAN single-tagged at the V-interface, an S-Tag is added at the ONU for upstream traffic, as defined in the table above

Traffic Stream	UNI MAC DA	MAC SA	Outer VLAN Tag	Inner VLAN Tag	Ethertype	IP DA	IP SA	TPID	Pbits	DEI	VID	TPID	Pbits	CFI or DEI	VID	Port #	Value	TPID	Pbits	DEI	VID	TPID	Pbits	CFI or DEI	VID	Port #	Number			
A	MAC1	MAC2	n/a	n/a	0x0800	x	x	n/a	n/a	n/a	n/a	0x88A8	9B	n/a	0x88A8	9B	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B
B	MAC3	MAC4	n/a	n/a	0x8863	x	x	n/a	n/a	n/a	n/a	0x88A8	9B	n/a	0x88A8	9B	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B			
C	MAC5	MAC6	n/a	n/a	0x8864	n/a	x	n/a	n/a	n/a	n/a	0x88A8	9B	n/a	0x88A8	9B	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B			
D	MAC7	MAC8	n/a	n/a	0x8866	n/a	x	n/a	n/a	n/a	n/a	0x88A8	9B	n/a	0x88A8	9B	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B	n/a	0x88A8	9B			

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
6.1.14 VID Support for Untagged Frames (1:1 VLAN Architecture Double-Tagged at the V Interface)

Test Name
VID Support for Untagged Frames (1:1 VLAN Double-Tagged at the V Interface)

Test Definition Number
ONU.6.1.14

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R9: The ONU MUST support setting VID for untagged and priority tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

Test Objective
Verify that the ONU supports setting VID for untagged frames in the upstream direction based on EtherType, for 1:1 VLAN double-tagged at the V-interface

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream 1 - IPv4)
4. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream 2 – PPPoE Discovery)
5. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream 3 – PPPoE Session)
6. The Ethernet Traffic Generator is configured to transmit untagged Ethernet frames upstream with the following parameters (Stream 4 – ARP)

7. For 1:1 VLAN double-tagged at the V-interface, a C-Tag is added at the ONU for upstream traffic, as defined in the table above.

Upstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x0800</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8863</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>MAC5</td>
<td>MAC6</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88bb</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>MAC7</td>
<td>MAC8</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88b6</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

6.1.15 VID Support for Priority Tagged Frames with Priority Preservation (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface)

Test Name
VID Support for Priority Tagged Frames with Priority Preservation (N:1 VLAN or 1:1 VLAN Single-Tagged at the V Interface)

Test Definition Number
ONU.6.1.15

Reference Document
BBF TR-156 [3]
BBF TR-101 [6]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-9** The ONU MUST support setting VID for untagged and priority-tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

BBF TR-101:
- For each port configured as ‘untagged or priority-tagged’ or ‘admit all’, the Access Node **MUST** allow the operator to configure whether it should copy the priority marking of the received upstream priority-tagged frame to the S-tag (and C-tag, if applicable) or whether it should override it using an ingress to egress priority mapping.

Test Objective
Verify that the ONU supports setting VID for priority-tagged frames in the upstream direction based on EtherType, for N:1 VLAN or
1:1 VLAN single-tagged at the V-interface, with priority preservation

Test Configuration

1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit priority tagged Ethernet frames upstream with the following parameters:

<table>
<thead>
<tr>
<th>Port</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>TPID</th>
<th>Pbits</th>
<th>DEI</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
<th>CFI or DEI</th>
<th>DEI</th>
<th>VID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>MAC5</td>
<td>MAC6</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>MAC7</td>
<td>MAC8</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits4</td>
<td>x</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

4. For N:1 VLAN or 1:1 VLAN single-tagged at the V-interface, an S-Tag is added at the ONU for upstream traffic, as defined in the table above.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

6.1.16 VID Support for Priority Tagged Frames without Priority Preservation (N:1 VLAN or 1:1 VLAN Architecture Single-Tagged at the V Interface)

Test Name
VID Support for Priority Tagged Frames without Priority Preservation (N:1 VLAN or 1:1 VLAN Single-Tagged at the V Interface)

Test Definition Number
ONU.6.1.16

Reference Document
BBF TR-156 [3]
BBF TR-101 [6]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:
- **R-9** The ONU **MUST** support setting VID for untagged and priority-tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

BBF TR-101:
- For each port configured as 'untagged or priority-tagged' or 'admit all', the Access Node **MUST** allow the operator to configure whether it should copy the priority marking of the received upstream priority-tagged frame to the S-tag (and C-tag, if applicable) or whether it should override it using an ingress to egress priority mapping

Test Objective
Verify that the ONU supports setting VID for priority-tagged frames in the upstream direction based on EtherType, for N:1 VLAN or 1:1 VLAN single-tagged at the V-interface, without priority preservation
Test Configuration

1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit priority tagged Ethernet frames upstream with the following parameters

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>T-CONT</th>
<th>U Interface</th>
<th>R/S Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>0</td>
<td>0x8000</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>0</td>
<td>0x8063</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC5</td>
<td>MAC6</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits3</td>
<td>x</td>
<td>0</td>
<td>0x8064</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC7</td>
<td>MAC8</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits4</td>
<td>x</td>
<td>0</td>
<td>0x8006</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

4. For N:1 VLAN or 1:1 VLAN single-tagged at the V-interface, an S-Tag is added at the ONU for upstream traffic, as defined in the table above

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

6.1.17 VID Support for Priority Tagged Frames with Priority Preservation (1:1 VLAN Architecture Double-Tagged at the V Interface)

Test Name
VID Support for Priority Tagged Frames with Priority Preservation (1:1 VLAN Double-Tagged at the V Interface)

Test Definition Number
ONU.6.1.17

Reference Document
BBF TR-156 [3]
BBF TR-101 [6]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-9** The ONU **MUST** support setting VID for untagged and priority-tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

BBF TR-101:
- For each port configured as 'untagged or priority-tagged' or 'admit all', the Access Node **MUST** allow the operator to configure whether it should copy the priority marking of the received upstream priority-tagged frame to the S-tag (and C-tag, if applicable) or whether it should override it using an ingress to egress priority mapping.
Test Objective
Verify that the ONU supports setting VID for priority-tagged frames in the upstream direction based on EtherType, for 1:1 VLAN double-tagged at the V-interface, with priority preservation

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit priority tagged Ethernet frames upstream with the following parameters

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI Port #</th>
<th>MAC DA Value</th>
<th>MAC SA Value</th>
<th>Outer VLAN Tag TPID</th>
<th>Outer VLAN Tag Pbits</th>
<th>Outer VLAN Tag DEI</th>
<th>Outer VLAN Tag VID</th>
<th>Inner VLAN Tag TPID</th>
<th>Inner VLAN Tag Pbits</th>
<th>Inner VLAN Tag DEI</th>
<th>Inner VLAN Tag VID</th>
<th>Ethertype TPID</th>
<th>IP DA Value</th>
<th>IP SA Value</th>
<th>Port # Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1 n/a</td>
<td>MAC2 n/a</td>
<td>0x8100</td>
<td>CPbit1 x</td>
<td>0</td>
<td>0x8000</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbit1 x</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC3 n/a</td>
<td>MAC4 n/a</td>
<td>0x8100</td>
<td>CPbit2 x</td>
<td>0</td>
<td>0x8863</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbit2 x</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC5 n/a</td>
<td>MAC6 n/a</td>
<td>0x8100</td>
<td>CPbit2 x</td>
<td>0</td>
<td>0x8864</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>CV02 GEM1 TCONT1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC7 n/a</td>
<td>MAC8 n/a</td>
<td>0x8100</td>
<td>CPbit4 x</td>
<td>0</td>
<td>0x8806</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>CV01 GEM1 TCONT1</td>
</tr>
</tbody>
</table>

4. For 1:1 VLAN double-tagged at the V-interface, a C-Tag is added at the ONU for upstream traffic, as defined in the table above.

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
6.1.18 VID Support for Priority Tagged Frames without Priority Preservation (1:1 VLAN Architecture Double-Tagged at the V Interface)

Test Name
VID Support for Priority Tagged Frames without Priority Preservation (1:1 VLAN Double-Tagged at the V Interface)

Test Definition Number
ONU.6.1.18

Reference Document
BBF TR-156 [3]
BBF TR-101 [6]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-9** The ONU **MUST** support setting VID for untagged and priority-tagged frames in the upstream direction based on EtherType, except on VLANs used for Business Ethernet Services.

BBF TR-101:
- For each port configured as 'untagged or priority-tagged’ or ‘admit all’, the Access Node **MUST** allow the operator to configure whether it should copy the priority marking of the received upstream priority-tagged frame to the S-tag (and C-tag, if applicable) or whether it should override it using an ingress to egress priority mapping

Test Objective
Verify that the ONU supports setting VID for priority-tagged frames in the upstream direction based on EtherType, for 1:1 VLAN
double-tagged at the V-interface, without priority preservation

Test Configuration

1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The Ethernet Traffic Generator is configured to transmit priority tagged Ethernet frames upstream with the following parameters

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>TPID</th>
<th>Pbits</th>
<th>DEI</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
<th>DEI</th>
<th>VID</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td></td>
<td>0x8000</td>
<td>x</td>
<td>CPbits1</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CVID1</td>
<td>GEM1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td></td>
<td>0x8063</td>
<td>x</td>
<td>CPbits2</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CVID2</td>
<td>GEM1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC5</td>
<td>MAC6</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits3</td>
<td></td>
<td>0x8064</td>
<td>n/a</td>
<td>CPbits3</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits3</td>
<td>x</td>
<td>CVID2</td>
<td>GEM1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC7</td>
<td>MAC8</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits4</td>
<td></td>
<td>0x8086</td>
<td>n/a</td>
<td>CPbits4</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits4</td>
<td>x</td>
<td>CVID1</td>
<td>GEM1</td>
</tr>
</tbody>
</table>

4. For 1:1 VLAN double-tagged at the V-interface, a C-Tag is added at the ONU for upstream traffic, as defined in the table above

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

6.1.19 ONU addition and removal of C-Tag for 1:1 VLANs

Test Name
ONU addition and removal of C-Tag for 1:1 VLANs

Test Definition Number
ONU.6.1.19

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-20** The ONU MUST support adding a C-Tag or S-Tag to upstream untagged traffic.
- **R-21** The ONU MUST support removing the tag from downstream traffic.

Test Objective
To verify that the ONU implementation supports the addition and removal of an C-Tag to upstream and downstream frames respectively.

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.

4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:

5. Single untagged U-interface (removal of C-Tag from downstream packets and addition of C-Tag to upstream packets).

6. One unicast GEM port.

7. The OLT emulator will be used to capture/report any upstream packets and generate any downstream packets.

8. The Ethernet traffic generator will be configured to capture/report any downstream packets and generate any upstream packets.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>U Interface</th>
<th>R/S Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNI MAC DA</td>
<td>MAC SA</td>
</tr>
<tr>
<td>A</td>
<td>1 MAC1 MAC2</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>B</td>
<td>1 MAC1 MAC2</td>
<td>n/a n/a</td>
</tr>
<tr>
<td>C</td>
<td>1 MAC1 MAC2</td>
<td>n/a n/a</td>
</tr>
</tbody>
</table>

Downstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC DA MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>D</td>
<td>MAC2 MAC1 n/a n/a n/a n/a 0x8100 CPbits1 x CVID</td>
<td>x x x GEM1</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
None
6.1.20 ONU addition and removal of S-Tag for 1:1 VLANs

Test Name
ONU addition and removal of S-Tag for 1:1 VLANs

Test Definition Number
ONU.6.1.20

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-20** The ONU MUST support adding a C-Tag or S-Tag to upstream untagged traffic.
- **R-21** The ONU MUST support removing the tag from downstream traffic.

Test Objective
To verify that the ONU implementation supports the addition and removal of an S-Tag to upstream and downstream frames respectively.

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values
4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:
5. Single untagged U-interface (removal of S-Tag from downstream packets and addition of S-Tag to upstream packets).
6. One unicast GEM port
7. The OLT emulator will be used to capture/report any upstream packets and generate any downstream packets.
8. The Ethernet traffic generator will be configured to capture/report any downstream packets and generate any upstream packets.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>U Interface</th>
<th>R/S Interface</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #</td>
<td>UNI MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
<td>Inner VLAN Tag</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

None
6.1.21 ONU translation between Q-Tag and C-Tag for 1:1 VLANs

Test Name
ONU translation between Q-Tag and C-Tag for 1:1 VLANs

Test Definition Number
ONU.6.1.21

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-22** The ONU MUST support VID translation of the Q-Tag received from the U-interface into the C-Tag or S-Tag for upstream-tagged traffic.
- **R-23** The ONU MUST support VID translation of the tag used in the downstream-tagged traffic into the Q-Tag sent to the U-interface.

Test Objective
To verify that the ONU implementation supports the translation of Q-Tags into C-Tags and C-Tags into Q-Tags for upstream and downstream frames respectively.
Test Configuration

1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:
 - Single tagged U-interface
 - Translation of Q-Tag into C-Tag in upstream direction and C-Tag into Q-Tag in the downstream direction
 - One unicast GEM port
5. The OLT emulator will be used to capture/report any upstream packets and generate any downstream packets.
6. The Ethernet traffic generator will be configured to capture/report any downstream packets and generate any upstream packets.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x (x)</td>
<td>QVID1</td>
<td>x (x)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x (x)</td>
<td>QVID2</td>
<td>x (x)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>x (x)</td>
<td>SVID2</td>
<td>x (x)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>x (x)</td>
<td>x (x)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Upstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>MAC2</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x (x)</td>
<td>GEM1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Downstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>MAC2</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>x (x)</td>
<td>GEM1</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
None
6.1.22 ONU translation between Q-Tag and S-Tag for 1:1 VLANs

Test Name
ONU translation between Q-Tag and S-Tag for 1:1 VLANs

Test Definition Number
ONU.6.1.22

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-22** The ONU MUST support VID translation of the Q-Tag received from the U-interface into the C-Tag or S-Tag for upstream-tagged traffic.
- **R-23** The ONU MUST support VID translation of the tag used in the downstream-tagged traffic into the Q-Tag sent to the U-interface.

Test Objective
To verify that the ONU implementation supports the translation of Q-Tags into S-Tags and S-Tags into Q-Tags for upstream and downstream frames respectively.

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:
 - Single tagged U-interface
 - Translation of Q-Tag into S-Tag in upstream direction and S-Tag into Q-Tag in the downstream direction
 - One unicast GEM port
5. The OLT emulator will be used to capture/report any upstream packets and generate any downstream packets.
6. The Ethernet traffic generator will be configured to capture/report any downstream packets and generate any upstream packets.

Upstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI MAC DA MAC SA Outer VLAN Tag Inner VLAN Tag Ethertype IP DA IP SA Outer VLAN Tag Inner VLAN Tag GEM T-CONT</td>
<td>UNI MAC DA MAC SA Outer VLAN Tag Inner VLAN Tag Ethertype IP DA IP SA Outer VLAN Tag Inner VLAN Tag GEM T-CONT</td>
<td></td>
</tr>
<tr>
<td>A 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 x x QVID1 x x n/a n/a n/a n/a 0x88A8 x x SVID2 GEM1 TCONT1</td>
<td></td>
</tr>
<tr>
<td>B 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 x x QVID1 x x n/a n/a n/a n/a 0x88A8 x x SVID2 GEM1 TCONT1</td>
<td></td>
</tr>
<tr>
<td>C 1 MAC1 MAC2 n/a n/a n/a n/a 0x88A8 x x SVID2 x x n/a n/a n/a n/a 0x88A8 x x SVID2 GEM1 TCONT1</td>
<td></td>
</tr>
<tr>
<td>D 1 MAC1 MAC2 n/a 0x8100 x x QVID1</td>
<td></td>
</tr>
</tbody>
</table>

Downstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>UNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value Value</td>
<td>Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value Value</td>
<td>Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E MAC2 MAC1 n/a n/a n/a n/a 0x88A8 x x SVID2 x x x GEM1 n/a n/a n/a n/a 0x8100 x x QVID1 1</td>
<td></td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
None
6.1.23 Test case reserved for future use.
6.1.24 Deriving P-bits as a function of received P-bits for a VBES architecture (single user port)

Test Name
Deriving P-bits as a function of received P-bits for a VBES architecture (single user port).

Test Definition Number
ONU.6.1.24

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:
- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Note: Only derivation from received P-bit markings is verified by this test case.

Also, R-6, 7, 46, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received P-bits.

Test Configuration
For this test, only a single user port is assumed.

ONU must be set-up with the standard L2-OCM (single user) with one upstream queues and one associated T-CONT. The intent of the test is to define two flows based on different P-bit values at the U-interface. Each flow at R/S will have an S-tag with a different P-bit value.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>U Interface</th>
<th>R/S Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port #</td>
<td>UNI</td>
<td>MAC DA</td>
</tr>
<tr>
<td>A 1</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
<tr>
<td>B 1</td>
<td>MAC3</td>
<td>MAC4</td>
</tr>
</tbody>
</table>

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.1.25 Deriving P-bits as a function of received VID for a 1:1 or N:1 architecture (single user port)

Test Name
Deriving P-bits as a function of received VID for a 1:1 or N:1 architecture (single user port).

Test Definition Number
ONU. 6.1.25

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
 - **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received VID.

Test Configuration
For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with three upstream queues and two associated T-CONTs. The intent of the test is to define two flows based on 2 different VID values at the U-interface. Each flow at R/S will have an S-tag with a specified P-bit value.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>U Interface</th>
<th>R/S Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNI MAC DA MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>A</td>
<td>1 MAC1 MAC2 n/a n/a n/a 0x8100</td>
<td>x x</td>
</tr>
<tr>
<td>B</td>
<td>1 MAC1 MAC2 n/a n/a n/a 0x8100</td>
<td>x x</td>
</tr>
</tbody>
</table>

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.1.26 Deriving P-bits as a function of received Ethertype for a 1:1 or N:1 architecture (single user port)

Test Name
Deriving P-bits as a function of received Ethertype for a 1:1 or N:1 architecture (single user port).

Test Definition Number
ONU. 6.1.26

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-48** The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received Ethertype.

Test Configuration
For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with two upstream queues and two associated T-CONTs. The intent of the test is to define two flows based on different Ethertype values at the U-interface. (Ethertype=0x8863 is PPPoE; Ethertype=0x0800 is IPoE) Each flow at R/S will have an S-tag with P-bit value different from the other flow.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

Traffic Stream

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>CVID1</td>
<td>0x8863</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>CVID1</td>
<td>0x0800</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.1.27 Deriving P-bits as a function of received user port for a 1:1 or N:1 architecture

Test Name
Deriving P-bits as a function of received user port for a 1:1 or N:1 architecture (multiple user ports).

Test Definition Number
ONU.6.1.27

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
TR-156:
- R-48 The ONU MUST support deriving P-bit markings in the upstream direction based on an arbitrary combination of: user port, VID, received P-bit markings, and EtherType.

Also, R-6, 7, 50.

Test Objective
Show that ONU can derive P-bit marking as a function of received user port.

Test Configuration
For this test, multiple user ports are assumed. Therefore multiple bridges must be provisioned in the OMCI model.

ONU must be set-up with the standard L2 OCM (multiple user port) with two upstream queues and two associated T-CONTs. The intent of the test is to define two streams per user ports. Each stream at R/S will have an S-tag with P-bit value based on user port.

The U-interface and S/R interface values for each test are shown below, along with the GEM port and T-CONT configuration.

Traffic corresponding to each flow will produce a different P-bit marking.

Test Procedure

OMCI Procedure Details

Refer to Appendix B

Pass/Fail Criteria

Remarks

- None
6.2 Frame Mapping and QoS

6.2.1 Single U-interface with multiple downstream GEM ports

Test Name
Single U-interface with multiple downstream GEM ports

Test Definition ID
ONU.6.2.1

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-19** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction.
- **R-31** The ONU MUST support mapping traffic from one or more GEM Ports to a **U** interface in the downstream direction.
- **R-41** The ONU MUST support mapping traffic from one or more GEM Ports to a **U** interface in the downstream direction.

Test Objective
The purpose of this test is to verify the ONU’s OMCI implementation, support the minimum functionality to configure a single U-interface on the ONU and associate that U-interface with downstream flows from multiple GEM ports. This test verifies both the OMCI configuration responses and support of active user traffic. In the downstream direction, GEM ports, identified by Port-IDs, are used to differentiate traffic classes. This test verifies the ONU’s ability to receive downstream traffic through multiple GEM ports and forward that traffic out a single U-interface. This test does not verify the performance of the traffic classifier or scheduler.

Test Configuration

1. ONU is powered and connected to ODN.
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator should be configured to transmit two streams of Ethernet frames downstream, with frames transmitted in each stream and the following parameters applied to each stream:
 a. Stream 1:
 - Frames transmitted on GEM Port 1
 b. Stream 2:
 - Frames transmitted on GEM Port 2

Downstream Direction

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC DA</td>
<td>MAC SA</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
<tr>
<td>B</td>
<td>MAC3</td>
<td>MAC4</td>
</tr>
</tbody>
</table>

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- No MAC filtering should be enabled on the ONU during these tests, or it should be configured to allow the test user traffic to pass through the ONU.
6.2.2 User Isolation on ONU Devices with Multiple U-interfaces

Test Name
User Isolation on ONU Devices with Multiple U-interfaces

Test Definition ID
ONU.6.2.2

Reference Document
BBF TR-156 [3]
BBF TR-101 [6]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-101:
- **R-40** The Access Node MUST be able to prevent forwarding traffic between user ports (user isolation). This behavior MUST be configurable per S-VID.

BBF TR-156:
- **R-3** The OLT MUST support user isolation as defined in TR-101

1User isolation at the ONU is an inherent feature of the TR-156 [3] architecture.

Test Objective
The purpose of this test is to verify an ONU with multiple U-interfaces (one subscriber per interface), typically used for the MDU and MTU deployment scenarios depicted in TR-156, does not forward traffic between the U-interfaces when the GPON has been configured to support user isolation.

Test Configuration

1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The Ethernet Traffic Generator should be configured to untagged Ethernet frames upstream, towards U-interface A (shown above) with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream UNI MAC DA MAC SA Outer VLAN Tag Inner VLAN Tag Ethertype IP DA IP SA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Port # Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value</td>
<td></td>
</tr>
<tr>
<td>A 1 MAC1 MAC2 n/a n/a n/a n/a n/a n/a n/a 0x88A8 0x88A8 SPbits1 x 0x88A8 SPbits2 x</td>
<td></td>
</tr>
<tr>
<td>B 2 MAC2 MAC1 n/a n/a n/a n/a n/a n/a n/a 0x88A8 0x88A8 SPbits1 x SVOD1 GEM1 TCONT1</td>
<td></td>
</tr>
</tbody>
</table>

5. The Ethernet Traffic Generator should be configured to untagged Ethernet frames upstream, towards U-interface B (shown above)
6. Only 1 user traffic class should be configured on the ONU (via defined OMCI messages below), requiring 1 GEM port (Alloc-ID, T-CONT, Port-ID).

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- No MAC filtering should be enabled on the ONU during these tests, or it should be configured to allow the test user traffic to pass through the ONU.
6.2.3 Mapping Traffic from GEM Ports to U Interface in the Downstream Direction in a VBES Architecture

Test Name
Mapping Traffic from GEM Ports to U Interface in the Downstream Direction in a VBES Architecture

Test Definition Number
ONU.6.2.3

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-41 The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction

Test Objective
- Verify that the ONU supports mapping traffic from one or more GEM Ports to a U-interface in the downstream direction

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator is configured to transmit double-tagged Ethernet frames downstream with the following parameters (Stream 1)
4. The OLT Emulator is configured to transmit double-tagged Ethernet frames downstream with the following parameters (Stream 2)

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
</tr>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
</tbody>
</table>

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.2.4 Mapping traffic into GEM Ports based on P-bit values in the upstream direction (single user port)

Test Name
Mapping traffic into GEM Ports based on P-bit values in the upstream direction (single user port)

Test Definition Number
ONU.6.2.4

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.
- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.
- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7.

Test Objective
Show that ONU can map upstream traffic to GEM ports from P-bit values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with two upstream queues and two associated T-CONTs. The intent of the test is to define four flows based on different combinations of received VIDs and P-bits at the U-interface. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CV01</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CV01</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CV02</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CV02</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.5 Mapping traffic into GEM Ports based on VID values in the upstream direction (single user port)

Test Name
Mapping traffic into GEM Ports based on VID values in the upstream direction (single user port)

Test Definition Number
ONU.6.2.5

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.
- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.
- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7.

Test Objective
Show that ONU can map upstream traffic to GEM ports and T-CONTs from VID values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with two queues and two associated T-CONTs. The intent of the test is to define four flows based on different combinations of received VIDs and P-bits at the U-interface. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA Value</th>
<th>Outer VLAN Tag TPID</th>
<th>Pbits</th>
<th>DEI</th>
<th>VID</th>
<th>Ethertype</th>
<th>IP DA Value</th>
<th>IP SA Value</th>
<th>GEM T-CONT Port # Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2 Value</td>
<td>n/a TPID</td>
<td>Pbits</td>
<td>DEI</td>
<td>VID</td>
<td>Ethertype</td>
<td>IP DA Value</td>
<td>IP SA Value</td>
<td>0x8100 CPbits1 x CVID1 x x x n/a n/a n/a n/a 0x8100 CPbits1 x CVID1 GEM1 TCONT1</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2 Value</td>
<td>n/a TPID</td>
<td>Pbits</td>
<td>DEI</td>
<td>VID</td>
<td>Ethertype</td>
<td>IP DA Value</td>
<td>IP SA Value</td>
<td>0x8100 CPbits2 x CVID1 x x x n/a n/a n/a n/a 0x8100 CPbits2 x CVID1 GEM1 TCONT1</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2 Value</td>
<td>n/a TPID</td>
<td>Pbits</td>
<td>DEI</td>
<td>VID</td>
<td>Ethertype</td>
<td>IP DA Value</td>
<td>IP SA Value</td>
<td>0x8100 CPbits1 x CVID2 x x x n/a n/a n/a n/a 0x8100 CPbits1 x CVID2 GEM2 TCONT2</td>
</tr>
<tr>
<td>D</td>
<td>MAC1</td>
<td>MAC2 Value</td>
<td>n/a TPID</td>
<td>Pbits</td>
<td>DEI</td>
<td>VID</td>
<td>Ethertype</td>
<td>IP DA Value</td>
<td>IP SA Value</td>
<td>0x8100 CPbits2 x CVID2 x x x n/a n/a n/a n/a 0x8100 CPbits2 x CVID2 GEM2 TCONT2</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.6 Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (single user port)

Test Name
Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (single user port)

Test Definition Number
ONU.6.2.6

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.
- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.
- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7, 46, 57, 67.

Test Objective
Show that ONU can map upstream traffic to GEM ports and T-CONTs from VID & P-bit values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

For this test, only a single user port is assumed.

ONU must be set-up with the standard L2 OCM (single user) with four queues and four associated T-CONTs. The intent of the test is to define four flows based on different combinations of received VIDs and P-bits at the U-interface. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM TPID</th>
<th>P-Bits</th>
<th>DEI</th>
<th>VID</th>
<th>TPID</th>
<th>P-Bits</th>
<th>CFI or DEI</th>
<th>VID</th>
<th>Port # Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
<td>CPn1</td>
<td>x</td>
<td>CVID1</td>
<td>0x8100</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.7 Mapping traffic into GEM Ports based on P-bit values in the upstream direction (multiple user port)

Test Name
Mapping traffic into GEM Ports based on P-bit values in the upstream direction (multiple user port)

Test Definition Number
ONU.6.2.7

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.

- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.

- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7.

Test Objective
Show that ONU can map upstream traffic to GEM ports and T-CONTs from P-bit values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

ONU must be set-up with the standard L2 OCM (multiple user) with two queues and two associated T-CONTs. The intent of the test is to define eight flows based on different combinations of received VIDs and P-bits and user port. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Port # Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value Value TPID Pbits DEI VID TPID Pbits CFI or DEI VID Value Value Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 CPbNs1 x CVd1 x x x n/a n/a n/a 0x8100 CPbNs1 x CVd1 GEM1 TCONT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 CPbNs1 x CVd1 x x x n/a n/a n/a 0x8100 CPbNs1 x CVd1 GEM1 TCONT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 CPbNs1 x CVd1 x x x n/a n/a n/a 0x8100 CPbNs1 x CVd1 GEM1 TCONT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 CPbNs2 x CVd2 x x x n/a n/a n/a 0x8100 CPbNs2 x CVd2 GEM2 TCONT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 1 MAC1 MAC2 n/a n/a n/a n/a 0x8100 CPbNs2 x CVd2 x x x n/a n/a n/a 0x8100 CPbNs2 x CVd2 GEM2 TCONT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 2 MAC3 MAC4 n/a n/a n/a n/a 0x8100 CPbNs1 x CVd1 x x x n/a n/a n/a 0x8100 CPbNs1 x CVd1 GEM3 TCONT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G 2 MAC3 MAC4 n/a n/a n/a n/a 0x8100 CPbNs2 x CVd2 x x x n/a n/a n/a 0x8100 CPbNs2 x CVd2 GEM4 TCONT1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H 2 MAC3 MAC4 n/a n/a n/a n/a 0x8100 CPbNs2 x CVd2 x x x n/a n/a n/a 0x8100 CPbNs2 x CVd2 GEM4 TCONT2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.8 Mapping traffic into GEM Ports based on VID values in the upstream direction (multiple user port)

Test Name
Mapping traffic into GEM Ports based on VID values in the upstream direction (multiple user port)

Test Definition Number
ONU.6.2.8

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.
- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.
- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7.

Test Objective
Show that ONU can map upstream traffic to GEM ports and T-CONTs from VID values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

ONU must be set-up with the standard L2 OCM (multiple user) with two queues and two associated T-CONTs. The intent of the test is to define eight flows based on different combinations of received VIDs and P-bits and user port. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Interface</td>
<td>Port #</td>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
<td>Pbits DEI</td>
<td>VID</td>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
<td>Pbits DEI</td>
<td>VID</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CVID1</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CVID1</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CVID1</td>
<td>x</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
</tr>
<tr>
<td>G</td>
<td>2</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>MAC3</td>
<td>MAC4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits2</td>
<td>x</td>
<td>CVID2</td>
<td>x</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.9 Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (multiple user port)

Test Name
Mapping traffic into GEM Ports based on VID & P-bit values in the upstream direction (multiple user port)

Test Definition Number
ONU.6.2.9

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156

- **R-51** The ONU MUST support mapping traffic into GEM Ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.
- **R-52** The ONU MUST NOT prevent multiple P-bit values being used in the same VLAN.
- **R-53** The ONU MUST NOT prevent multiple VLANs from using the same P-bits.

Also, R-6, 7, 46, 57, 67.

Test Objective
Show that ONU can map upstream traffic to GEM ports and T-CONTs from VID & P-bit values. Also show that there are no restrictions on multiple P-bit values in the same VLAN, nor on multiple VLANs using the same P-bit value.

Test Configuration

ONU must be set up with the standard L2 OCM (multiple user) with four queues and four associated T-CONTs. The intent of the test is to define eight flows based on different combinations of received VIDs and P-bits and user ports. Each flow will map to the specified GEM port and T-CONT; tags will not be modified. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>A 2 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>C 1 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>D 1 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>E 2 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>F 2 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>G 2 MAC1 MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>CPbits1</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Test Procedure

Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks

- None
6.2.10 Mapping multiple P-bit values to the same GEM port (single user port)

Test Name
Mapping multiple P-bit values to the same GEM port (single user port).

Test Definition Number
ONU.6.2.10

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Requirement Description

BBF TR-156:
- **R-51** The ONU MUST support mapping traffic into GEM ports based on arbitrary combination of user port, VID and P-bit values in the upstream direction.

Also, R-6, R-7

Test Objective
Demonstrate that ONU can map multiple P-bit values to the same GEM port.

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. A single user port is assumed
4. ONU must be set-up with the standard L2 OMCI Common Model (single user) with two upstream queues and TCONTs.
5. The intent of the test is to demonstrate that multiple P-bit values at the U-interface can be mapped to the same GEM port. Four upstream flows are mapped into two GEM ports and T-CONTs based on four different P-bit values at the U-interface. Tags will not be modified.
6. The flows and their corresponding tags, GEM ports and T-CONTs are given in the table below.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>Cbits1</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>Cbits2</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>Cbits3</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>Cbits4</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

7. All untagged upstream traffic from the U-interface should be silently discarded

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.2.11 Test Case Reserved For Future Use
6.2.12 Strict priority downstream scheduling among 4 queues on ONU

Test Name
Strict priority downstream scheduling among 4 queues on ONU

Test Definition Number
ONU-6.2.12

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:

• **R-56** In the downstream direction, the ONU MUST support at least 4 queues per user port, one per traffic class
• **R-63** The OLT and ONU MUST support scheduling of downstream queues according to strict priority among at least 4 TCs.
• **R-64** The OLT and ONU MUST support assigning an individual TC to a downstream queue.

Also

• **R-46**: The OLT and ONU MUST support at least 4 traffic classes for Ethernet frames.

Test Objective

To verify that the ONU implementation supports four queues on the downstream direction, that each queue can be assigned to one specific traffic class and that it supports strict priority scheduling among those four traffic classes.
Test Configuration

1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test
 - to support 4 traffic classes, each one associated to a different P-bit value
 - with 4 GEM ports and 4 downstream queues, each pair of GEM port-downstream queue assigned to one traffic classes
 - with strict priority scheduling between the four downstream queues
4. The OLT emulator will be configured to transmit four interleaved flows of 802.1ad tagged Ethernet frames with the parameters in the next table. Also, GEM port mapping is shown. Tags won’t be modified on the ONU; expected frame format at the U-interface is also shown in the table.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA Value</td>
<td>MAC SA Value</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>A MAC1 Value</td>
<td>MAC2 Value</td>
<td>n/a</td>
</tr>
<tr>
<td>B MAC3 Value</td>
<td>MAC4 Value</td>
<td>n/a</td>
</tr>
<tr>
<td>C MAC5 Value</td>
<td>MAC6 Value</td>
<td>n/a</td>
</tr>
<tr>
<td>D MAC7 Value</td>
<td>MAC8 Value</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Downstream Direction

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
• This test case is designed to overload the UNI in the downstream resulting in frame discard. As the downstream frame rate increases, the frame loss for the lower priority frames should be observed at the UNI. Therefore, the tester should select a line rate for the UNI that is below the overall throughput capacity of the ONU under test.
6.2.13 Indicating drop precedence using P-bits upstream

Test Name
Indicating drop precedence using P-bits upstream

Test Definition Number
ONU.6.2.13

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:

- **R-54** The OLT and ONU MUST support drop precedence within at least 2 traffic classes and MUST support configurable mapping to these classes and drop precedence from the 8 possible values of the Ethernet P-bits.

Test Objective
Show that ONU can implement drop precedence using P-bits upstream

Test Configuration
ONU must be set-up with the standard L2 OCM (single user) with two upstream queues and two associated T-CONTs. ONU queues are set up with the following: drop precedence indication = PCP 6P2D; yellow thresholds set to half the queue size; green thresholds
set to the queue size. The intent of the test is to define four flows, two per traffic class. For each traffic class, one of the flows is marked with drop precedence. Each T-CONT should to be serviced at a fixed rate, E. Each flow rate is set to R=0.7E.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM Port</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>2</td>
<td>x</td>
<td>SVID1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>3</td>
<td>x</td>
<td>SVID1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>4</td>
<td>x</td>
<td>SVID1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>5</td>
<td>x</td>
<td>SVID1</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Drop Precedence Flow

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.2.14 Indicating drop precedence using DEI bit upstream

Test Name
Indicating drop precedence using DEI bit upstream

Test Definition Number
ONU.6.2.14

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:
- R-55 The OLT and ONU MUST support drop precedence within all supported traffic classes based on the DEI bit value of the 802.1ad header.

Test Objective
Show that ONU can implement drop precedence using DEI bit upstream

Test Configuration
ONU must be set-up with the standard L2 OCM (single user) with four upstream queues and four associated T-CONTs. ONU queues are set up with the following: drop precedence indication = DEI; yellow thresholds set to half the queue size; green thresholds set to
the queue size. The intent of the test is to define eight flows, two per traffic class. For each traffic class, one of the flows is marked with drop precedence. Each T-CONT should be serviced at a fixed rate, E. Each flow is set to rate R=0.7E.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port and T-CONT configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>SPBits1</td>
<td>SVID1</td>
<td>x</td>
<td>n/a</td>
<td>GEM1 TCONT1</td>
</tr>
<tr>
<td>B</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>SPBits2</td>
<td>SVID1</td>
<td>x</td>
<td>n/a</td>
<td>GEM2 TCONT2</td>
</tr>
<tr>
<td>C*</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>SPBits3</td>
<td>SVID1</td>
<td>x</td>
<td>n/a</td>
<td>GEM3 TCONT3</td>
</tr>
<tr>
<td>D</td>
<td>1 MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>SPBits4</td>
<td>SVID1</td>
<td>x</td>
<td>n/a</td>
<td>GEM4 TCONT4</td>
</tr>
</tbody>
</table>

* Drop Precedence Flow

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.2.15 Indicating drop precedence using P-bits downstream

Test Name
Indicating drop precedence using P-bits downstream

Test Definition Number
ONU.6.2.15

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:
- **R-54** The OLT and ONU MUST support drop precedence within at least 2 traffic classes and MUST support configurable mapping to these classes and drop precedence from the 8 possible values of the Ethernet P-bits.

Test Objective
Show that ONU can implement drop precedence using P-bits downstream

Test Configuration
ONU must be set-up with the standard L2 OCM (single user) with two downstream queues. ONU queues are set up with the following: drop precedence indication = PCP 6P2D; yellow thresholds set to half the queue size; green thresholds set to the queue
size. The intent of the test is to define four flows, two per traffic class. For each traffic class, one of the flows is marked with drop precedence. For a user port egress rate of E, each flow rate is set to R=0.7E.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>GEM</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>Port #</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>3</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
</tr>
<tr>
<td>D</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
</tr>
</tbody>
</table>

* Drop Precedence Flow

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.16 Indicating drop precedence using DEI bit downstream

Test Name
Indicating drop precedence using DEI bit downstream

Test Definition Number
ONU.6.2.16

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:

- **R-55** The OLT and ONU MUST support drop precedence within all supported traffic classes based on the DEI bit value of the 802.1ad header.

Test Objective
Show that ONU can implement drop precedence using DEI bit downstream

Test Configuration
ONU must be set-up with the standard L2 OCM (single user) with four downstream queues. ONU queues are set up with the following: drop precedence indication = DEI; yellow thresholds set to half the queue size; green thresholds set to the queue size. The
The intent of the test is to define eight flows, two per traffic class. For each traffic class, one of the flows is marked with drop precedence. For a user port egress rate of E, each flow rate is set to R=0.7E.

The U-interface and S/R-interface values for each test are shown below, along with the GEM port configuration.

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>Downstream Direction</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
<td>Inner VLAN Tag</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
<td>Pbits</td>
</tr>
<tr>
<td>A*</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>B</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>C*</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>D</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>E*</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>F</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>G*</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
<tr>
<td>H</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Drop Precedence Flow

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.17 Test Case Reserved For Future Use

6.2.18 Test Case Reserved For Future Use
6.2.19 Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction

Test Name
Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction

Test Definition Number
ONU.6.2.19

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-41** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction
- **R-31** The ONU MUST support mapping traffic from one or more GEM Ports to a U interface in the downstream direction.
- **R-19** The ONU MUST support mapping traffic from one or more GEM Ports to a U interface in the downstream direction.

Test Objective
- Verify that the ONU supports mapping traffic from GEM Ports to multiple U-interfaces in the downstream direction

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator is configured to transmit S-tagged Ethernet frames downstream with the following parameters (Stream 1)
4. The OLT Emulator is configured to transmit S-tagged Ethernet frames downstream with the following parameters (Stream 2)

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAC DA</td>
<td>MAC SA</td>
</tr>
<tr>
<td>Stream A</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
<tr>
<td>Stream B</td>
<td>MAC3</td>
<td>MAC2</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.2.20 Test Case Reserved For Future Use
6.2.21 Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction

Test Name
Mapping Traffic from GEM Ports to Multiple U Interfaces in the Downstream Direction

Test Definition Number
ONU.6.2.21

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory if Multiple U Interfaces are supported by the ONU

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-31** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction
- **R-19** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction.
- **R-41** The ONU MUST support mapping traffic from one or more GEM Ports to a U-interface in the downstream direction.

Test Objective
- Verify that the ONU supports mapping traffic from GEM Ports to multiple U-interfaces in the downstream direction

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator is configured to transmit tagged Ethernet frames downstream with the following parameters (Stream 1)
4. The OLT Emulator is configured to transmit tagged Ethernet frames downstream with the following parameters (Stream 2)
5. The OLT Emulator is configured to transmit tagged Ethernet frames downstream with the following parameters (Stream 3)

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
</tr>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
<tr>
<td>B</td>
<td>MAC3</td>
<td>MAC4</td>
</tr>
<tr>
<td>C</td>
<td>MAC1</td>
<td>MAC2</td>
</tr>
</tbody>
</table>

* In the upstream direction, mapping to traffic classes is done using C-Tag Pbits

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.2.22 Test Case Reserved For Future Use

6.2.23 Test Case Reserved For Future Use

6.2.24 Test Case Reserved For Future Use
6.3 IGMP Controlled Multicast

6.3.1 ONU passing of downstream IGMP messages

Test Name
ONU passing of downstream IGMP messages

Test Definition Number
ONU.6.3.1

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

• R-81 The ONU MUST support receiving downstream multicast IGMP messages (e.g. Global Query messages) on either a unicast GEM port, or the multicast GEM port that is used to carry the multicast content.

Test Objective
To verify that the ONU implementation supports receiving and passing IGMP messages received on either the downstream multicast GEM port or a unicast GEM port.

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values
4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:
 - Single untagged U-interface (removal of S-Tag from downstream packets and addition of S-Tag to upstream packets).
 - One unicast GEM port
 - One downstream multicast GEM port
5. The OLT emulator will be configured to transmit two downstream IGMP global/general query message. The first IGMP message will be transmitted to the unicast GEM port, and will be carried within a GEM encapsulated Ethernet frame that includes the provisioned S-Tag VLAN header. The second IGMP message will transmitted to the multicast GEM port, and will be carried within a GEM encapsulated Ethernet frame that includes the provisioned S-Tag VLAN header.
6. The Ethernet traffic generator will be configured to report/capture the receipt of the IGMP messages.

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- It is the responsibility of the tester to ensure it is possible to verify which received IGMP message corresponds to which transmitted message (i.e. at the Ethernet traffic generator, the two received frames will appear identical).
6.3.2 Test Case Reserved For Future Use
6.3.3 ONU silent discarding of IGMPv1 messages

Test Name
ONU silent discarding of IGMPv1 messages

Test Definition Number
ONU.6.3.3

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
 - R-98 The ONU MUST silently discard IGMP v1 messages.

Test Objective
To verify that the ONU implementation supports silently discarding of IGMPv1 messages.

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN and powered on.
2. ONU activation and OMCC establishment processes have been successfully completed.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values
4. The OLT emulator will be configured to send the sequence of OMCI messages required to provision the ONU under test to support the following configuration:
- Single untagged U-interface (removal of S-Tag from downstream packets and addition of S-Tag to upstream packets).
- One unicast GEM port
- One downstream multicast GEM port

5. The OLT emulator will be used to report/capture any upstream packets.

6. The Ethernet traffic generator will be configured to generate and transmit an upstream IGMPv1 membership report/group join message into the U-interface.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.3.4 Test Case Reserved For Future Use
6.3.5 Marking Upstream IGMP Messages with Ethernet P-Bits

Test Name
Marking Upstream IGMP Messages with Ethernet P-Bits

Test Definition Number
ONU.6.3.5

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-94** The ONU MUST support marking, in the upstream direction, user-initiated IGMP messages with Ethernet P-bits

Test Objective
Verify that the ONU supports marking, in the upstream direction, of user-initiated IGMP messages with Ethernet P-bits

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The following Multicast group definition is applied at the OLT Emulator and transmitted by the OLT to the ONU under test using the Manage Entity “MULTICAST OPERATION PROFILE” (attribute: dynamic access control list table)
4. The ONU under test is configured to add an S-Tag to upstream untagged traffic

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None

<table>
<thead>
<tr>
<th>IPTV Channel (Group)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Multicast Group</td>
<td>IP_G1</td>
</tr>
<tr>
<td>MAC Multicast Group</td>
<td>MAC_G1</td>
</tr>
<tr>
<td>Multicast Server (Source)</td>
<td>1</td>
</tr>
<tr>
<td>Multicast Server IP Address</td>
<td>IP_S1</td>
</tr>
<tr>
<td>Multicast Server MAC Address</td>
<td>MAC_S1</td>
</tr>
</tbody>
</table>
6.3.6 IGMP controlled Multicast

Test Name
IGMP controlled Multicast

Test Definition ID
ONU.6.3.6

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description

BBF TR-156:
- **R-74** The GPON network MUST be able to forward all multicast VLAN using a single downstream multicast GEM port
- **R-79** The GPON network MUST use a bidirectional GEM port for upstream IGMP messages. This GEM port can be shared by other VLANs from the same U-interface that share the same TC

Test Objective
The purpose of this test is to verify that the ONU is able to receive all multicast-VLAN traffic using a single downstream multicast GEM port and IGMP messages use a bidirectional GEM port. This GEM port can be shared by other VLANs from the same U-interface that share the same TC

Test Configuration
1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. A single U-interface is used
4. The Ethernet traffic generator connected to the OLT Emulator generates multicast Ethernet frames.

<table>
<thead>
<tr>
<th>Multicast flow</th>
<th>Multicast IP source address</th>
<th>Multicast group IP destination address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1</td>
<td>IP-S1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
<tr>
<td>Ch2</td>
<td>IP-S2</td>
<td>IP-G2</td>
<td>MAC-G2</td>
<td>VID2</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

5. The Ethernet traffic generator connected to the OLT Emulator generates unicast Ethernet frames

<table>
<thead>
<tr>
<th>unicast destination MAC address</th>
<th>unicast Source MAC address</th>
<th>VID</th>
<th>Pbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC-U1</td>
<td>MAC-V1</td>
<td>VID3</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

6. The Ethernet Traffic Generator connected to the U-interface generates unicast Ethernet frames

<table>
<thead>
<tr>
<th>unicast destination MAC address</th>
<th>unicast Source MAC address</th>
<th>VID</th>
<th>Pbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC-V1</td>
<td>MAC-U1</td>
<td>VID3</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

7. The Ethernet Traffic Generator connected to the U-interface is configured as follows. The IP and MAC addresses will be used to send IGMP V2 messages
8. The Ethernet Traffic Generator connected to the U-interface is configured as follow. The IP and MAC addresses will be used to send IGMP V3 messages

<table>
<thead>
<tr>
<th>Source IP address</th>
<th>Source MAC address</th>
<th>Multicast IP group address</th>
<th>VID</th>
<th>P bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-U2</td>
<td>MAC-U2</td>
<td>IP-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

9. This table shows the bidirectional GEM port mapping (unicast flow, and IGMP messages)

<table>
<thead>
<tr>
<th>User Port</th>
<th>TPID</th>
<th>P-bit value</th>
<th>GEM Port</th>
<th>T-CONT</th>
<th>S/R-interface</th>
<th>P-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0x8100</td>
<td>Pbit1</td>
<td>GEM1</td>
<td>TCONT1</td>
<td>Pbit1</td>
<td></td>
</tr>
</tbody>
</table>

10. All the previous flows have the same Traffic Class

Test Procedure

OMCI Procedure Details

Refer to Annex B
Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.3.7 Multicast White List

Test Name
Multicast White List

Test Definition ID
ONU.6.3.7

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-76** The ONU MUST allow the configuration of the IP multicast groups that are acceptable per user port based on:
 - Source address matching
 - Group address matching
 - VLAN membership

- **R-84** The ONU MUST support matching groups conveyed by IGMP messages on a user port to the list of groups (R-76) associated with this port. When there is no match, the copy of IGMP message directed toward the multicast-VLAN MUST be silently discarded. When there is a match, the IGMP message SHOULD be forwarded within a multicast-VLAN, and enter the IGMP snooping function.

Test Objective
The purpose of this test is to verify that the ONU is able to allow the configuration of the IP multicast groups that are acceptable per user port based on source address matching, group address matching and VLAN membership.

Test Configuration

1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. ONU and OLT MUST support IGMP V3
4. A single U-interface is used
5. A bidirectional GEM port between the ONU under test U-interface and the OLT emulator has been created by OMCI, for IGMP messages
6. A downstream multicast GEM port between the ONU under test and the OLT emulator has been created by OMCI, for multicast Ethernet frames.
7. The OLT Emulator generates multicast Ethernet frames as follows

<table>
<thead>
<tr>
<th>Multicast flow</th>
<th>Multicast source IP address</th>
<th>Multicast IP group address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1</td>
<td>IP-S1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>CVID1</td>
<td>CPbit1</td>
</tr>
<tr>
<td>Ch2</td>
<td>IP-S2</td>
<td>IP-G2</td>
<td>MAC-G2</td>
<td>CVID1</td>
<td>CPbit1</td>
</tr>
<tr>
<td>Ch3</td>
<td>IP-S3</td>
<td>IP-G3</td>
<td>MAC-G3</td>
<td>CVID1</td>
<td>CPbit1</td>
</tr>
<tr>
<td>Ch4</td>
<td>IP-S3</td>
<td>IP-G4</td>
<td>MAC-G4</td>
<td>CVID1</td>
<td>CPbit1</td>
</tr>
<tr>
<td>Ch5</td>
<td>IP-S4</td>
<td>IP-G5</td>
<td>MAC-G5</td>
<td>CVID2</td>
<td>CPbit1</td>
</tr>
<tr>
<td>Ch6</td>
<td>IP-S5</td>
<td>IP-G5</td>
<td>MAC-G5</td>
<td>CVID3</td>
<td>CPbit1</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B
Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.3.8 IGMP rate limit

Test Name
IGMP rate limit

Test Definition ID
ONU.6.3.8

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- R-87 The ONU MUST be able to rate-limit IGMP messages received from user ports on a multicast-VLAN.

Test Objective
The purpose of this test is to verify that the ONU is able to rate-limit IGMP messages received from user ports on a multicast-VLAN.

Test Configuration
1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. A single U-interface is used
4. A bidirectional GEM port between the ONU under test U-interface and the OLT emulator has been created by OMCI, for IGMP messages

5. A multicast GEM port between the ONU under test and the OLT emulator has been created by OMCI, for multicast Ethernet frames.

6. The Ethernet Traffic Generator connected to the U-interface is configured to use the following IP and MAC addresses for sending IGMP messages:

<table>
<thead>
<tr>
<th>Source IP address</th>
<th>Source MAC address</th>
<th>Multicast IP group address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>Pbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-U1</td>
<td>MAC-U1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.3.9 IGMP immediate leave

Test Name
IGMP immediate leave

Test Definition ID
ONU.6.3.9

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- R-91 The ONU MUST support IGMP immediate leave as part of the IGMP transparent snooping.

Test Objective
The purpose of this test is to verify that the ONU is able to support IGMP immediate leave as part of the IGMP transparent snooping.

Test Configuration
1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. A single U-interface is used
4. A bidirectional GEM port between the ONU under test U-interface and the OLT emulator has been created by OMCI, for IGMP messages.

5. A multicast GEM port between the ONU under test and the OLT emulator has been created by OMCI, for multicast Ethernet frames.

6. The OLT Emulator generates downstream multicast Ethernet frames:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Multicast source IP address</th>
<th>Multicast IP group address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1</td>
<td>IP-S1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

7. The Ethernet frames analyser is connected between ONU and the Ethernet traffic Generator.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.3.10 Maximum number of multicast flows

Test Name
Maximum number of multicast flows

Test Definition ID
ONU.6.3.10

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
 R-97 The ONU MUST be able to configure per U-interface the maximum number of simultaneous multicast groups allowed.

Test Objective
The purpose of this test is to verify that the ONU is able to configure per U-interface the maximum number of simultaneous multicast groups allowed.

Test Configuration
1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. A single U-interface is used
4. A bidirectional GEM port between the ONU under test U-interface and the OLT emulator has been created by OMCI, for IGMP messages
5. A multicast GEM port between the ONU under test and the OLT emulator has been created by OMCI, for multicast Ethernet frames.
6. The OLT Emulator generates downstream multicast Ethernet frames

<table>
<thead>
<tr>
<th>Channel</th>
<th>Multicast source IP address</th>
<th>Multicast IP group address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1</td>
<td>IP-S1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
<tr>
<td>Ch2</td>
<td>IP-S1</td>
<td>IP-G2</td>
<td>MAC-G2</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
<tr>
<td>Ch3</td>
<td>IP-S1</td>
<td>IP-G3</td>
<td>MAC-G3</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.3.11 IGMP transparent Snooping

Test Name
IGMP transparent Snooping

Test Definition Number
ONU.6.3.11

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:

- **R-88** The ONU and OLT MUST support an IGMP v3 (as per RFC 3376) transparent snooping function.
- **R-89** The ONU and OLT IGMP v3 transparent snooping function MUST support the capability to snoop the multicast source IP address and destination IP group address in IGMP messages and to set the corresponding MAC group address filters as specified in R-90.
- **R-90** The ONU and OLT IGMP v3 transparent snooping function MUST be able to dynamically create and delete MAC-level Group Filter entries, enabling in turn, selective multicast forwarding from network-facing VLANs to user-facing ports.

Test Objective
Verify the ONU supports the IGMP transparent snooping function and this functionality can be enabled for a multicast VLAN. Note, this test case does not cover the second MUST within R-88, and has been intentionally removed from the above requirements.

Test Configuration

1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU has successfully completed test cases in section 6.1.
5. The OLT Emulator should configure the ONU to support the following configuration:
 - One multicast VLANs, VID1
 - Enable IGMP transparent snooping on VLAN VID1
 - One bi-directional GEM port
 - One multicast GEM port
 - Singled-tagged U-interface, with no translation of VID values between the R/S and U-interfaces.
 - No restrictions for IGMP dynamic access (all flows are allowed)
6. The OLT Emulator will be configured to generate the following downstream, multicast flows. All flows should use the same multicast GEM port.

<table>
<thead>
<tr>
<th>Flow</th>
<th>DST MAC Addr.</th>
<th>SRC MAC Addr.</th>
<th>DST IP Addr.</th>
<th>SRC IP Addr.</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC-G1</td>
<td>MAC-S1</td>
<td>IP-G1</td>
<td>IP-S1</td>
<td>SVID1</td>
<td>0x8100</td>
<td>Any</td>
</tr>
<tr>
<td>B</td>
<td>MAC-G2</td>
<td>MAC-S2</td>
<td>IP-G2</td>
<td>IP-S2</td>
<td>SVID1</td>
<td>0x8100</td>
<td>Any</td>
</tr>
</tbody>
</table>
7. The Ethernet Traffic Generator should be configured to transmit the following upstream IGMP join/leave messages for each of the above multicast groups using the following parameters:

<table>
<thead>
<tr>
<th>Flow</th>
<th>SRC MAC Addr.</th>
<th>SRC IP Addr.</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>MAC-S7</td>
<td>IP-S7</td>
<td>SVID1</td>
<td>0x8100</td>
<td>Any</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.3.12 Multicast VLAN membership based on user ports (Multiple User ports)

Test Name
Multicast VLAN membership based on user ports

Test Definition ID
ONU.6.3.12

Reference Document
- BBF TR-156 [3] Section 5.3.2
- ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditional Mandatory (ONU with multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-96** The ONU MUST support configuring which user ports are members of a given multicast-VLAN

Test Objective
The purpose of this test is to verify that the support configuring which user ports are members of a given multicast-VLAN

Test Configuration
1. ONU under test and OLT emulator are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, has been ranged, and a GEM port for OMCI has been created by PLOAM.
3. Multiple U interfaces are used
4. The Ethernet Traffic Generator connected to the OLT Emulator generates multicast Ethernet frames.

<table>
<thead>
<tr>
<th>Multicast flow</th>
<th>Multicast IP source address</th>
<th>Multicast group IP destination address</th>
<th>Multicast MAC group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch1</td>
<td>IP-S1</td>
<td>IP-G1</td>
<td>MAC-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
<tr>
<td>Ch2</td>
<td>IP-S2</td>
<td>IP-G2</td>
<td>MAC-G2</td>
<td>VID2</td>
<td>Pbit2</td>
</tr>
</tbody>
</table>

5. The Ethernet Traffic Generator connected to the U interface (user port 1) is configured as follow. The IP and MAC addresses will be used to send IGMP V2 messages.

<table>
<thead>
<tr>
<th>Source IP address</th>
<th>Source MAC address</th>
<th>Multicast IP group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-U1</td>
<td>MAC-U1</td>
<td>IP-G1</td>
<td>VID1</td>
<td>Pbit1</td>
</tr>
</tbody>
</table>

6. The Ethernet Traffic Generator connected to the U interface (user port 2) is configured as follow. The IP and MAC addresses will be used to send IGMP V2 messages.

<table>
<thead>
<tr>
<th>Source IP address</th>
<th>Source MAC address</th>
<th>Multicast IP group address</th>
<th>VID</th>
<th>p bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-U2</td>
<td>MAC-U2</td>
<td>IP-G2</td>
<td>VID2</td>
<td>Pbit2</td>
</tr>
</tbody>
</table>

7. User port Multicast VLAN association at the ONU

<table>
<thead>
<tr>
<th>User port</th>
<th>Multicast VLAN members</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VID1</td>
</tr>
<tr>
<td>2</td>
<td>VID2</td>
</tr>
</tbody>
</table>
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Appendix B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.3.13 IGMP transparent Snooping (Multiple User ports)

Test Name
IGMP transparent Snooping (Multiple User ports)

Test Definition Number
ONU.6.3.13

Reference Document
BBF TR-156 [3]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
TR-156:

- R-88: The ONU and OLT MUST support an IGMP v3 (as per RFC 3376) transparent snooping function.
- R-89: The ONU and OLT IGMP v3 transparent snooping function MUST support the capability to snoop the multicast source IP address and destination IP group address in IGMP messages and to set the corresponding MAC group address filters as specified in R-90.
- R-90: The ONU and OLT IGMP v3 transparent snooping function MUST be able to dynamically create and delete MAC-level Group Filter entries, enabling in turn, selective multicast forwarding from network-facing VLANs to user-facing ports.

Test Objective
Verify the ONU supports the IGMP transparent snooping function and this functionality can be enabled for a multicast VLAN for ONU with multiple U Interfaces. Note, this test case does not cover the second MUST within R-88, and has been intentionally removed from the above requirements.
Test Configuration

1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created by PLOAM.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The OLT Emulator should configure the ONU to support the following configuration:
 - One multicast VLAN, VID1
 - Enable IGMP transparent snooping on VLAN VID1
 - One bi-directional GEM port per U-interface
 - One multicast GEM port
 - Symmetric user port tagging rules

User port	U interface Q-Tag	R/S interface S-Tag
1	none	SVID1
2	none	SVID1

 - All U-interfaces are member of VID1
 - No restrictions for IGMP dynamic access (all flows are allowed)
5. The OLT Emulator will be configured to generate the following downstream, multicast flows. All flows should use the same multicast GEM port.

<table>
<thead>
<tr>
<th>Flow</th>
<th>DST MAC Addr.</th>
<th>SRC MAC Addr.</th>
<th>DST IP Addr.</th>
<th>SRC IP Addr.</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC-G1</td>
<td>MAC-S1</td>
<td>IP-G1</td>
<td>IP-S1</td>
<td>SVID1</td>
<td>0x88a8</td>
<td>Any</td>
</tr>
</tbody>
</table>
6. The Ethernet Traffic Generator should be configure to transmit the following upstream IGMP join/leave messages for each of the above multicast groups using the following parameters:

<table>
<thead>
<tr>
<th>Flow</th>
<th>User port</th>
<th>SRC MAC Addr.</th>
<th>SRC IP Addr.</th>
<th>VID</th>
<th>TPID</th>
<th>Pbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>MAC-U1</td>
<td>IP-U1</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>MAC-U2</td>
<td>IP-U2</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Appendix B

Pass/Fail Criteria

Remarks
- None
6.3.14 IGMP Transparent forwarding

Test Name
IGMP Transparent forwarding

Test Definition ID
ONU. 6.3.14

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156:
- **R-10** The ONU MUST support adding an S-Tag to upstream untagged traffic received from the U-interface.
- **R-20** The ONU MUST support adding a C-Tag or S-Tag to upstream untagged traffic.
- **R-34** The ONU MUST support adding an S-Tag in the upstream direction for Q-tagged, untagged, and priority-tagged frames.
- **R-82** The ONU and OLT MUST support the identification and processing of upstream IGMP messages. When this function is disabled on a port and/or VLAN, these messages are transparently forwarded.

Note: Only the second sentence in R-82 is verified by this test.

Test Objective
Verify the ONU supports the IGMP transparent forwarding function on a single U-interface configured to pass untagged traffic across the U-interface. This test verifies both the OMCI configuration responses and support of active user traffic. The VLAN S-Tag is added to upstream traffic by the ONU before crossing the R/S-interface. Note that only the default behaviour described in the second half of R-82 is verified in this test.

Test Configuration

1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. The Ethernet Traffic Generator should be configured to transmit Ethernet frames upstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>GEM</th>
<th>T-CONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC_MC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>0x0800</td>
<td>IP_MC1</td>
<td>IP1</td>
<td>n/a</td>
<td>n/a</td>
<td>0x88A8</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Only 1 user traffic class should be configured on the ONU (via defined OMCI messages below), requiring 1 GEM port (Alloc-ID, T-CONT, Port-ID).

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- No MAC filtering should be enabled on the ONU during these tests, or it should be configured to allow the test user traffic to pass through the ONU.
6.4 Non-IGMP Controlled Multicast and Broadcast

6.4.1 Downstream Broadcast Handling, Single U-interface

Test Name
Downstream Broadcast Handling, Single U-interface

Test Definition Number
ONU.6.4.1

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
TR-156:

- **R-113** If the ONU receives a tagged frame on a downstream GEM Port, it MUST forward it to all U-interfaces that are members of that VLAN.

Test Objective
Verify the ONU passes frames with broadcast destination MAC addresses in the downstream direction to all U-interfaces that are members of the VLAN contained in the frame’s headers. This test is performed on ONU devices with 1 U-interface.

Test Configuration
1. The ONU is powered and connected to the ODN
2. The ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU has successfully completed test cases in section 6.1.
5. The OLT Emulator should be configure to transmit the following downstream Ethernet frames:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>A</td>
<td>MAC-BRD MAC1</td>
<td>n/a n/a n/a n/a 0x88A8 0 0 SVID1 x x x GEM2 n/a n/a n/a n/a n/a n/a n/a 0x88A8 0 0 SVID2 x x x GEM2 _ _ _ _ _ _ _ _</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.4.2 Downstream Broadcast Handling, Multiple U-interfaces

Test Name
Downstream Broadcast Handling, Multiple U-interfaces

Test Definition Number
ONU.6.4.2

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (if ONT has multiple user ports)

Unit Under Test
ONU

Requirement Description
BBF TR-156:

- **R-113** If the ONU receives a tagged frame on a downstream GEM Port, it MUST forward it to all U-interfaces that are members of that VLAN.

Test Objective
Verify the ONU passes frames with broadcast destination MAC addresses in the downstream direction to all U-interfaces that are members of the VLAN contained in the frame’s headers. This test is performed on ONU devices with multiple U-interfaces.

Test Configuration
1. The ONU is powered and connected to the ODN
2. The ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU has successfully completed test cases in section 6.1.
5. The OLT Emulator should be configure to transmit the following downstream Ethernet frames:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>Value</td>
<td>Value</td>
<td>TPID</td>
</tr>
<tr>
<td>A</td>
<td>MAC-BRD</td>
<td>MAC1</td>
</tr>
<tr>
<td>B</td>
<td>MAC-BRD</td>
<td>MAC1</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.5 Filtering

6.5.1 Test Case Reserved For Future Use

6.5.2 Test Case Reserved For Future Use

6.5.3 Test Case Reserved For Future Use

6.5.4 Test Case Reserved For Future Use

6.5.5 Test Case Reserved For Future Use

6.5.6 Test Case Reserved For Future Use

6.5.7 Test Case Reserved For Future Use

6.5.8 Test Case Reserved For Future Use

6.5.9 Test Case Reserved For Future Use
6.6 TR-156 Other

6.6.1 2000-Byte Frames Supported by the ONU

Test Name
2000-Byte Frames Supported by the ONU

Test Definition Number
ONU.6.6

Reference Document
BBF TR-156 [3] Section 4.4
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
BBF TR-156

• R-4 The ONU/ONT MUST support frame size of 2000 bytes as per IEEE 802.3as

Test Objective
Verify that the ONU supports frame size of 2000 bytes as per IEEE 802.3as

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created by PLOAM.
3. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames with frame size of 2000 bytes as per IEEE 802.3as upstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>UNI</th>
<th>MAC DA</th>
<th>MAC SA</th>
<th>Outer VLAN Tag</th>
<th>Inner VLAN Tag</th>
<th>Ethertype</th>
<th>IP DA</th>
<th>IP SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAC1</td>
<td>MAC2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0x8100</td>
<td>SPbits1</td>
<td>SVID1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. The Ethernet Traffic Generator is configured to transmit tagged Ethernet frames with frame size of 2000 bytes as per IEEE 802.3as downstream with the following parameters:

<table>
<thead>
<tr>
<th>Traffic Stream</th>
<th>S/R Interface</th>
<th>U Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC DA</td>
<td>MAC SA</td>
<td>Outer VLAN Tag</td>
</tr>
<tr>
<td>A</td>
<td>MAC2</td>
<td>MAC1</td>
</tr>
</tbody>
</table>

Test Procedure

OMCI Procedure Details
Refer to Appendix B

Pass/Fail Criteria

Remarks
- None
6.6.2 Test Case Reserved For Future Use
6.7 Initial provisioning of ONU

6.7.1 Local setting of a registration ID at the ONU (ONU retains the Registration ID indefinitely)

Test Name
Local setting of a registration ID at the ONU (ONU retains the Registration ID indefinitely)

Test Definition Number
ONU.6.7.1

Reference Document
BBF TR-156 [3]
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
- **R-152** ONU that support the registration ID approach MUST support the local setting of a registration ID
- **R-153** ONU that support the registration ID approach MUST retain the registration ID indefinitely

Test Objective
To verify that the ONU retains indefinitely the Registration ID

Test Configuration
1. The OLT emulator and ONU under test are connected to the same ODN
2. The ONU under test is power off.
3. Deactivate ONU autodiscover mode if this functionality is available at the OLT emulator
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.8 ONU Bring-up

6.8.1 New ONU Bring-up method for new ONU

Test Name
New ONU Bring-up method on new ONU

Test Definition Number
ONU.6.8.1

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
To verify that a new ONU, that is, an ONU that has never completed the OLT’s MIB synchronization process, correctly completes the New ONU Bring-up method as described in ITU-T G.988 [2].

Test Configuration
1. ONU has never been provisioned or if it has, it has been de-provisioned.
2. ONU is powered off and connected to the ODN.
3. OLT emulator is powered on, active and connected to the ODN.
4. The OLT emulator should be configured to send the sequence of PLOAM and OMCI messages required to fulfill the ONU activation process, the OMCC establishment, MIB synchronization and MIB upload processes.

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- Old and new ONU as defined in G.988 [2] Appendix I.
6.8.2 New ONU Bring-up method for old ONU

Test Name
New ONU Bring-up method for old ONU

Test Definition Number
ONU.6.8.2

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
To verify that an old ONU, that is, an ONU that has previously completed the OLT’s MIB synchronization process, correctly completes the New ONU Bring-up method.

Test Configuration
1. ONU has previously been provisioned. For example, it has successfully passed test ONU-6.8.1.
2. OLT emulator is powered on, active and connected to the ODN.
3. ONU is powered on and has successfully achieved MIB synchronization.
4. The OLT emulator should be configured to send the sequence of PLOAM and OMCI messages required to fulfill the ONU activation process, the OMCC establishment, MIB synchronization and MIB upload processes.
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.8.3 Old ONU Bring-up method for ONU

Test Name
Old ONU Bring-up method for ONU

Test Definition Number
ONU.6.8.3

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
To verify that an old ONU, that is, an ONU that has previously completed the OLT’s MIB synchronization process, correctly completes the Old ONU Bring-up method as described in Appendix I of ITU-T G.988 [2].

Test Configuration
1. ONU has previously been provisioned. For example, it has successfully passed test ONU-6.8.1.
2. OLT emulator is powered on, active and connected to the ODN.
3. ONU is powered on and has successfully achieved MIB synchronization.
4. The OLT emulator should be configured to send the sequence of PLOAM and OMCI messages required to fulfill the ONU activation process, the OMCC establishment, MIB synchronization and MIB upload processes.
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
• None
6.8.4 New ONU Bring-up method for new ONU with encrypted OMCC

Test Name
New ONU Bring-up method for new ONU with encrypted OMCC

Test Definition Number
ONU.6.8.4

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 section 7.2.2 Encryption

Test Objective
The purpose of the test is to verify that an ONU is able to complete the OMCI synchronisation with the OMCC channel encrypted.

Test Configuration
1. ONU has never been provisioned or if it has, it has been de-provisioned.
2. ONU successfully completed Test 6.8.1.
3. ONU is powered off and connected to the ODN.
4. OLT emulator is powered on, active and connected to the ODN.
The OLT emulator should be configured to send the sequence of PLOAM and OMCI messages required to fulfill the ONU activation process, the AES key exchange, the OMCC establishment, the OMCC configuration as an encrypted Port-ID, MIB synchronization and MIB upload processes.

Test Procedure

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.9 MIB and Alarm Synchronization

6.9.1 Alarm synchronization

Test Name
Alarm synchronization

Test Definition ID
ONU 6.9.1

Reference Document
ITU-T G.988 [2]:

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
The purpose of this test is to verify that the ONU is able, first to upload its alarm table when the OLT detects an alarm mismatch value and second to increment its Alarm sequence number value.

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. Ethernet traffic generator is connected with the ONU under test and Ethernet port of the ONU under test is up. No need of Ethernet traffic

Test Procedure

OMCI Procedure Details

Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.9.2 MIB synchronization: Correct Data Sync

Test Name
MIB synchronization

Test Definition ID
ONU 6.9.2

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
The purpose of this test is to verify that the ONU is able to answer with the right MIB Data Sync value

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B
Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.9.3 MIB synchronization : MIB Upload

Test Name
MIB synchronization

Test Definition ID
ONU.6.9.3

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
The purpose of this test is to verify that the ONU is able to upload its MIB on request of the OLT.

Test Configuration
1. OLT Emulator and ONU under test are powered and connected to ODN
2. ONU under test has been activated by the OLT emulator, ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks

- None
6.10 Software Image Download

6.10.1 Software Image Download, multiple window sizes, padded final window

Test Name
Software Image Download, multiple window sizes, padded final window

Test Definition Number
ONU.6.10.1

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
Verify the ONU is able to perform the software image download procedure under the following conditions:
 i. Multiple window sizes proposed by the OLT
 ii. OLT inserts padding final sections (if software image is not evenly divisible by the window size)

Test Configuration
 1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.

3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.

4. ONU vendor has provided valid software image to use in testing.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
Measured/calculated values used in testing:

- Software image size (bytes):
- OLT Window Size (integer): 32
 1. ONU chosen window size (integer):
 2. Number of sections per software image (integer):
 3. Number of windows per software image (integer):
- OLT Window Size (integer): 16
 1. ONU chosen window size (integer):
 2. Number of sections per software image (integer):
 3. Number of windows per software image (integer):
- OLT Window Size (integer): 64
 1. ONU chosen window size (integer):
 2. Number of sections per software image (integer):
 3. Number of windows per software image (integer):
6.10.2 Software Image Download, shortened final window

Test Name
Software Image Download, shortened final window

Test Definition Number
ONU.6.10.2

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
Verify the ONU is able to perform the software image download procedure under the following conditions:

i. OLT shortens the final window (if software image is not evenly divisible by the window size) by setting the AR bit in the Download_Section_cmd for the final section of the software image.

Test Configuration

1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU vendor has provided valid software image to use in testing.

Test Procedure

OMCI Procedure Details

Pass/Fail Criteria

Remarks

Measured/calculated values used in testing:

1. OLT Window Size (integer): 32
2. Software image size (bytes):
3. ONU chosen window size (integer):
4. Number of sections per software image (integer):
5. Number of windows per software image (integer):
6.10.3 Failed Software Image Download, missing section

Test Name
Failed Software Image Download, missing section

Test Definition Number
ONU.6.10.3

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
Verify the ONU is able to detect a gap in the section number within the Download_Section_cmd, and report the error to the OLT.

Test Configuration
1. ONU is powered and connected to ODN.
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU vendor has provided valid software image to use in testing.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
Measured/calculated values used in testing:

- OLT Window Size (integer): 32
- Software image size (bytes):
- ONU chosen window size (integer):
- Number of sections per software image (integer):
- Number of windows per software image (integer):
6.10.4 Failed Software Image Download, incorrect section CRC

Test Name
Failed Software Image Download, incorrect section CRC

Test Definition Number
ONU.6.10.4

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
Verify the ONU is able to detect and report an incorrect CRC for an OMCI message transporting a Download_Section_cmd.

Test Configuration
1. ONU is powered and connected to ODN.
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU vendor has provided valid software image to use in testing.
Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
Measured/calculated values used in testing:

- OLT Window Size (integer): 32
- Software image size (bytes):
- ONU chosen window size (integer):
- Number of sections per software image (integer):
- Number of windows per software image (integer):
6.10.5 Failed Software Image Download, incorrect software image CRC

Test Name
Failed Software Image Download, incorrect software image CRC

Test Definition Number
ONU.6.10.5

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
Verify the ONU is able to detect and report an incorrect CRC for the complete software image after the OLT issues the End_Software_Download_command. It is assumed the software image was transferred to the ONU without error.

Test Configuration
1. ONU is powered and connected to ODN.
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU vendor has provided valid software image to use in testing.
5. ONU must have passed tests ONU-6.10.1 and ONU-6.10.2.

Test Procedure

OMCI Procedure Details

Pass/Fail Criteria

Remarks

Measured/calculated values used in testing:

- OLT Window Size (integer): 32
- Software image size (bytes):
- ONU chosen window size (integer):
- Number of sections per software image (integer):
- Number of windows per software image (integer):
6.10.6 Test Case Reserved For Future Use
6.10.7 Activate uncommitted software image

Test Name
Activate uncommitted software image

Test Definition Number
ONU.6.10.7

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
This test verifies the ONU is able to activate an uncommitted, valid software image, which may have been newly downloaded to the ONU (outside the scope of this test). Once the uncommitted software image is running, the ONU is power cycled to ensure it falls back to the committed software image.

Test Configuration
1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU has two valid software images loaded, one must be committed and active, the other must be uncommitted, and inactive. (This may require the OLT Emulator to download a new, valid software image to the ONU).

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
- None
6.10.8 Commit software image

Test Name
Commit software image

Test Definition Number
ONU.6.10.8

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Mandatory

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
This test verifies the ONU is able to commit a valid software image.

Test Configuration
1. ONU is powered and connected to ODN
2. ONU has been activated by the OLT Emulator, has been ranged, and a GEM port for OMCI has been created as a result of ONU-ID assignment.
3. The OLT Emulator has instructed the ONU to reset its MIB to factory default values.
4. ONU has two valid software images loaded, one must be committed and active, the other must be uncommitted, and inactive.
 Note: This may require the OLT Emulator to download a new, valid software image to the ONU.
5. ONU has passed test ONU-6.10.7.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

Remarks
 • None
6.11 Circuit Packs

6.11.1 Test Case Reserved For Future Use

6.11.2 Test Case Reserved For Future Use
6.11.3 Cardholder or port mapping package for integrated ONU

Test Name
Cardholder match or port mapping package for integrated ONU

Test Definition Number
ONU.6.11.3

Reference Document
ITU-T G.988 [2]

Test Type
Conformance

Test Requirement Type
Conditionally Mandatory (integrated ONU devices)

Unit Under Test
ONU

Requirement Description
ITU-T G.988 Appendix I

Test Objective
To verify that the ONU is able to instantiate the cardholder or port mapping package without any configuration coming from the OLT

Test Configuration
1. OLT emulator and ONU under test are connected to the ODN.
2. ONU under test is power off
3. ONU activation and OMCC establishment processes have been successfully completed.

Test Procedure
Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php

OMCI Procedure Details
Refer to Annex B

Pass/Fail Criteria

Remarks
- None
6.11.4 Test Case Reserved For Future Use

6.11.5 Test Case Reserved For Future Use

6.11.6 Test Case Reserved For Future Use
Annex A: Test Case Template

Test Name
Descriptive name of test.

Test Definition Number
Test Definition Number = ABC- x, y where:
ABC Code identifying test type, as defined in the Test Plan:
• ONU for ONU Conformance Tests
x Subsection number from ID-247 within which this test is defined.
y Number of the test case.

Reference Document
BBF TR-156
ITU-T G.988,
Etc.

Test Type
Conformance

Test Requirement Type
Indicate if the test case is Mandatory or Optional. In general, test cases that verify mandatory (MUST) requirements would be defined as mandatory and test cases that verify optional (SHOULD/MAY) requirements will be defined as optional. However, the ultimate decision resides with the developers of this test plan. Tests that address a subset of device types, should be noted within this field. For example, tests that are mandatory only for multi-subscriber ONUs are classified as “Mandatory for multiple user port devices”.

Unit Under Test
ONU

Requirement Description
List of requirements from the appropriate specification(s) that are applicable for this test. Note: A test case should test as small a set of requirements as is practical.

Test Objective
Succinct description of the test purpose

Test Configuration
Preconditions description if needed
Succinct description of the test configuration like GEM port/TCONT usage, VIDs, P-bit, etc. A test configuration schematic may also be used to add clarity to the test configuration description.

Test Procedure
Description of the test procedure considering that OMCI verification is part of the test procedure but described in a dedicated section

OMCI Procedure Details
Pointer to a specific annex with OMCI Implementation description (List of impacted ME and messages exchanges) Not required for interoperability tests.

Pass/Fail Criteria
A detailed description of the criteria upon which to base a pass/fail determination.

Remarks
Description of any particular observations that might affect the test result
Annex B: OMCI Procedure Details

The OMCI message sequences used in implementing the test cases described in this document are available in ID-284 [8].

The schema used by those message sequences is available in ID-283 [7].
Annex C: OMCI Scrambler Principle of Operation

The OMCI scrambler operation used by the OLT emulator for ONU conformance testing shall operate with respect to the following common principles and rules:

Omitted in Abstract Test Plan: Refer to http://www.broadband-forum.org/technical/test_cert_programs.php
Annex D: OMCI Scrambler Example Implementation

import java.io.*;
import java.util.Scanner;

class OMCICommand {
 public String comment;
 public String source;
 public String type;
 public String cmd;
 public String MEID;
 public String[] attr;
 public String[] attrName;
 public String[] attrValue;
 public int order;
}

public class OMCI_Scrambler {

 public static void main(String[] args) throws IOException {
 Scanner s = null;
 FileWriter w = null;
 FileWriter log = null;
 String Line = null;
 String Temp = null;
 String[] TableAttr = null;
 int MaxCmdCnt = 1024;
 OMCICommand[] Commands = new OMCICommand[MaxCmdCnt];
 String LogStr = new String();
 String commandTemp = new String();
 int row = 0;
 int n = 0;
int i = 0;
int j = 0;
int cand;
int position = 1;
int loopcnt = 0;

String Attrboundary = ",,";
String ErrLogName = "errLog.txt";

if(0 == args.length)
{
 System.out.println("pls input the source file name with .txt");
 return;
}

try {
 s = new Scanner(new BufferedReader(new FileReader(args[0].toString())));
 // s.useDelimiter("\n\m\r\t*;");
 s.useDelimiter(";");
 while (s.hasNext()) {
 row++;
 Line = s.next().trim();
 if (Line.contains("//"))
 commandTemp = Line.split("//")[1].trim();
 }
 Line = Line.split("//")[0];
 if (!Line.isEmpty()) {
 /* Line has no '(' or ')'; skip and log err */
 if ((!Line.contains("(")) || (!Line.contains(")"))) {
 try {

 }
 }

 }
}
log = new FileWriter(ErrLogName, true);
// log error and return;
LogStr = row + " Attrs Not Find '(' or ')'\n\r"
System.out.println(LogStr);
log.append(LogStr);
}

} finally {
 if (log != null) {
 log.close();
 }
}

continue;
}

/* TableAttr input format check */
if (Line.contains("["])) {
 /*
 * if tableAttr different counters of '[' and ']', skip
 * and log err
 */
 boolean flag = false;
 if (Line.split("["])).length != Line.split("\]").length) {
 try {

 log = new FileWriter(ErrLogName, true);
 // log error and return;
 LogStr = row
 + " TableAttr counter of '[' different form ']'\n\r"
 System.out.println(LogStr);
 log.append(LogStr);
 } finally {
 if (log != null) {

log.close();

if (flag) {

 // log error and return;
 LogStr = row
 + " TableAttr Find "," n "r";
 System.out.println(LogStr);
 log.append(LogStr);
 flag = true;
 break;

} finally {
 if (log != null) {
 log.close();
 }
}

}
continue;
}

if (n >= MaxCmdCnt) {
 System.out.println("too many cmds to process !!");
 return;
}

Commands[n] = new OMCIcommand();

if(!commandTemp.isEmpty()) {
 Commands[n].comment = "//" + commandTemp.trim();
 commandTemp = "";
} else {
 Commands[n].comment = "";
}

Commands[n].order = 0;
Commands[n].source = Line;

Commands[n].type = Line.split("\(\)[0].trim();

Line = Line.split("\(\)[1];
Line = Line.split("\(\)\)[0].trim();

Commands[n].cmd = Line.split(Attrboundary, 3)[0].trim();
Commands[n].MEID = Line.split(Attrboundary, 3)[1].trim();
if (Line.split(Attrboundary, 3).length == 2) {

}
```java
_commands[n].attr = new String[0];
} else {
    Line = Line.split(Attrboundary, 3)[2];
    _commands[n].attr = Line.split(Attrboundary);
}
int L = _commands[n].attr.length;
_commands[n].attrName = new String[L];
_commands[n].attrValue = new String[L];
for (j = 0; j < L; j++) {
    Commands[n].attrName[j] = Commands[n].attr[j].split("=")[0].trim();
    Commands[n].attrValue[j] = Commands[n].attr[j].split("=")[1].trim();
}
}

n++;
}

} else {

}

} finally {
    if (s != null) {
        s.close();
    }
}

/* check if exists create cmd */
boolean errExist = false;
for (i = 0; i < n; i++) {
    if (Commands[i].cmd.compareToIgnoreCase("Set") == 0
        && (!Commands[i].MEID.contains("!")))
        for (j = 0; j < n; j++) {
            if ((Commands[j].cmd.compareToIgnoreCase("Create") == 0)
                && (Commands[j].MEID.compareTo(Commands[i].MEID) == 0)) {
                break;
            }
        }
    }
    if (j >= n) {
        errExist = true;

        /* err log */
        try {
            log = new FileWriter(ErrLogName, true);
            // log error and return;
            LogStr = row + "     Entity " + Commands[i].type
                + " MeID " + Commands[i].MEID
                + " has no create msg\n\r";
            System.out.println(LogStr);
            log.append(LogStr);
        } finally {
            if (log != null) {
                log.close();
            }
        }
    }
}
if (errExist) {
    return;
}

try {
    String FormatFileName = "FormattedOriginal.txt";
    w = new FileWriter(FormatFileName);

    for (i = 0; i < n; i++) {
        String Reconst = new String();

        if (Commands[i].comment.contains("//"))
            Reconst = Commands[i].comment + "\n\n";
        w.write(Reconst);
    }

    Reconst = Commands[i].type + "(" + Commands[i].cmd
        + Attrboundary + Commands[i].MEID;
    for (j = 0; j < Commands[i].attr.length; j++) {
        Reconst = Reconst + ", " + Commands[i].attrName[j] + "="
            + Commands[i].attrValue[j];
    }
    Reconst = Reconst + "); \n\n";

    w.write(Reconst);
}
} finally {
    if (w != null) {
        w.close();
    }
}
position = 1;
loopcnt = 0;
do {
    int count = (int) (Math.random() * (n - position + 1));
j = -1;
cand = -1;
do {
    j++;
    if (Commands[j].order == 0) {
        cand++;
    }
} while (count != cand);
cand = j;
loopcnt++;n
if (loopcnt > 1000) {
    System.out.println("err happen, excessive looping !!");
    try {
        log = new FileWriter(ErrLogName, true);
        // log error and return;
        LogStr = " err!! check the errlog \n\r";
        log.append(LogStr);
    } finally {
        if (log != null) {
            log.close();
        }
    }
}
    return;
}
boolean valid = false;
/* This loop is the test that a SET comes after the corresponding CREATE */
if ((Commands[cand].cmd.compareToIgnoreCase("Set") == 0)
    && (!Commands[cand].MEID.contains("!")
    )
    for (i = 0; i < n; i++)
        if ((Commands[i].order > 0)
            && (Commands[i].cmd
                .compareToIgnoreCase("Create") == 0)
            && Commands[i].MEID
                .compareTo(Commands[cand].MEID) == 0)
        {
            valid = true;
            break;
        }
} else {
    valid = true;
}

if (valid) { /*This loop is the test that pointer Attr happen after the corresp. CREATE */
    for (j = 0; j < Commands[cand].attrValue.length; j++)
        if (!Commands[cand].attrValue[j].contains("!")
            for (i = 0; i < n; i++)
                if ((Commands[cand].attrValue[j].compareTo(Commands[i].MEID) == 0)
                    && (Commands[i].cmd
                        .compareToIgnoreCase("Create") == 0)
                    && (Commands[i].order == 0))
            valid = false;
            break;
        }
    }

    if (valid == false) {
if (valid) { /*This loop is the test that VLAN table set happens after the corresp. VLAN SET's*/
    if ( (Commands[cand].type.compareTo("Ext_VLAN_Tagging_Opr_Config_Data") == 0) 
        && (Commands[cand].attrName[0].contains("RcvFrameVLANTagOperTbl")))
    {
        for (i = 0; i < n; i++)
            if ( (Commands[i].order == 0) 
                 && (Commands[i].type.compareTo("Ext_VLAN_Tagging_Opr_Config_Data") == 0) )
                for (j = 0; j < Commands[i].attr.length; j++)
                    if ((Commands[i].attrName[j].contains("InputTPID")) ||
                        ( Commands[i].attrName[j].contains("OutputTPID")))
                        valid = false;
                break;
        if (valid == false)
            break;
    }
if (valid) {
    Commands[cand].order = position;
    position++;
    loopcnt = 0;
try {
    String ScrambledFileName = "ScrambledOriginal.txt";
    w = new FileWriter(ScrambledFileName);
    for (position = 1; position <= n; position++) {
        for (i = 0; i < n; i++) {
            if (Commands[i].order == position) {
                String Reconst = new String();
                Reconst = Commands[i].type + "(" + Commands[i].cmd
                + ", " + Commands[i].MEID;
                for (j = 0; j < Commands[i].attr.length; j++) {
                    Reconst = Reconst + ", " + Commands[i].attrName[j]
                    + ";" + Commands[i].attrValue[j];
                }
                Reconst = Reconst + "); \n";
                w.write(Reconst);
            }
        }
    }
    w.write("\n";
}
for (i = 0; i < currentN; i++) {
    if ((Commands[i].cmd.compareToIgnoreCase("Create") == 0)
        || ((Commands[i].cmd.compareToIgnoreCase("Set") == 0) && (Commands[i].attr.length > 1))) {
        for (j = 0; j < Commands[i].attr.length; j++) {
            if (n >= MaxCmdCnt) {
                System.out.println("too many cmds to process !!");
                continue;
            }
            Commands[n] = new OMCIcommand();
            Commands[n].comment = ";
            Commands[n].order = 0;
            Commands[n].source = null;
            Commands[n].type = Commands[i].type;
            Commands[n].cmd = "Set";
            Commands[n].MEID = Commands[i].MEID;
            Commands[n].attr = new String[1];
            Commands[n].attrName = new String[1];
            Commands[n].attrValue = new String[1];
            Commands[n].attrName[0] = Commands[i].attrName[j];
            Commands[n].attrValue[0] = Commands[i].attrValue[j];
            n++;
        }
    }
}
try {
    String FormatFileName = "FormattedSplitted.txt";
    w = new FileWriter(FormatFileName);
    for (i = 0; i < n; i++) {
        if (Commands[i].comment.contains("//"))
            w.write(Commands[i].comment + "\
"
        }
        String Reconst = new String();
        Reconst = Commands[i].type + "(" + Commands[i].cmd
            + Attrboundary + Commands[i].MEID;
        for (j = 0; j < Commands[i].attr.length; j++) {
            Reconst = Reconst + ", " + Commands[i].attrName[j] + "="
                + Commands[i].attrValue[j];
        }
        Reconst = Reconst + "); \r\n";
        w.write(Reconst);
    }
    w.close();
}
for(i = 0; i < n; i++)
    Commands[i].order = 0;
position = 1;
loopcnt = 0;
do {
    int count = (int) (Math.random() * (n - position + 1));
j = -1;
cand = -1;
do {
        j++;
        if (Commands[j].order == 0) {
            cand++;
        }
    } while (count != cand);
cand = j;
loopcnt++;
if (loopcnt > 100) {
    System.out.println("err happen, can't halase !!");
    try {
        log = new FileWriter(ErrLogName, true);
        // log error and return;
        LogStr = " err!! check the errlog \n\r";
        log.append(LogStr);
    } finally {
        if (log != null) {
            log.close();
        }
    }
}
}
return;
if (Commands[cand].order == 0) {
    boolean valid = false;
    if (((Commands[cand].cmd.compareToIgnoreCase("Set") == 0)
        && (!Commands[cand].MEID.contains("!"))) {
        for (i = 0; i < n; i++) {
            if ((Commands[i].order > 0)
                && (Commands[i].cmd
                    .compareToIgnoreCase("Create") == 0)
                && Commands[i].MEID
                    .compareTo(Commands[cand].MEID) == 0) {
                valid = true;
                break;
            }
        }
    } else {
        valid = true;
    }
}
if (valid) {
    for (j = 0; j < Commands[cand].attr.length; j++) {
        if (!Commands[cand].attrValue[j].contains("!")) {
            for (i = 0; i < n; i++) {
                if ((Commands[cand].attrValue[j]
                    .compareTo(Commands[i].MEID) == 0)
                    && (Commands[i].cmd
                        .compareToIgnoreCase("Create") == 0)
                    && (Commands[i].order == 0)) {
                    valid = false;
                    break;
                }
            }
        }
    }
}
if (valid == false) {
    break;
}
}
}

if (valid) {
    Commands[cand].order = position;
    position++;
    loopcnt = 0;
}
} while (position <= n);

try {
    String ScrambledFileName = "ScrambledSplitted.txt";
    w = new FileWriter(ScrambledFileName);
    for (position = 1; position <= n; position++) {
        for (i = 0; i < n; i++) {
            if (Commands[i].order == position) {
                String Reconst = new String();
                Reconst = Commands[i].type + "(" + Commands[i].cmd + ", " + Commands[i].MEID + ");
                for (j = 0; j < Commands[i].attr.length; j++) {
                    Reconst = Reconst + ", " + Commands[i].attrName[j] + "=" + Commands[i].attrValue[j];
                }
                Reconst = Reconst + "); \n";
                w.write(Reconst);
            }
        }
    }
    w.close();
}
End of Broadband Forum Abstract Test Plan ATP-247