TR-383 Common YANG Modules for Access Networks Issue: 1 Amendment 1 Issue Date: June 2018 #### **Notice** The Broadband Forum is a non-profit corporation organized to create guidelines for broadband network system development and deployment. This Technical Report has been approved by members of the Forum. This Technical Report is subject to change. This Technical Report is copyrighted by the Broadband Forum, and all rights are reserved. Portions of this Technical Report may be copyrighted by Broadband Forum members. ### **Intellectual Property** Recipients of this Technical Report are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of this Technical Report, or use of any software code normatively referenced in this Technical Report, and to provide supporting documentation. #### Terms of Use #### 1. License Broadband Forum hereby grants you the right, without charge, on a perpetual, non-exclusive and worldwide basis, to utilize the Technical Report for the purpose of developing, making, having made, using, marketing, importing, offering to sell or license, and selling or licensing, and to otherwise distribute, products complying with the Technical Report, in all cases subject to the conditions set forth in this notice and any relevant patent and other intellectual property rights of third parties (which may include members of Broadband Forum). This license grant does not include the right to sublicense, modify or create derivative works based upon the Technical Report except to the extent this Technical Report includes text implementable in computer code, in which case your right under this License to create and modify derivative works is limited to modifying and creating derivative works of such code. For the avoidance of doubt, except as qualified by the preceding sentence, products implementing this Technical Report are not deemed to be derivative works of the Technical Report. #### 2. NO WARRANTIES THIS TECHNICAL REPORT IS BEING OFFERED WITHOUT ANY WARRANTY WHATSOEVER, AND IN PARTICULAR, ANY WARRANTY OF NONINFRINGEMENT IS EXPRESSLY DISCLAIMED. ANY USE OF THIS TECHNICAL REPORT SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER THE BROADBAND FORUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY FOR ANY DAMAGES OF ANY NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, ARISING FROM THE USE OF THIS TECHNICAL REPORT. #### 3. THIRD PARTY RIGHTS Without limiting the generality of Section 2 above, BROADBAND FORUM ASSUMES NO RESPONSIBILITY TO COMPILE, CONFIRM, UPDATE OR MAKE PUBLIC ANY THIRD PARTY ASSERTIONS OF PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS THAT MIGHT NOW OR IN THE FUTURE BE INFRINGED BY AN IMPLEMENTATION OF THE TECHNICAL REPORT IN ITS CURRENT, OR IN ANY FUTURE FORM. IF ANY SUCH RIGHTS ARE DESCRIBED ON THE TECHNICAL REPORT, BROADBAND FORUM TAKES NO POSITION AS TO THE VALIDITY OR INVALIDITY OF SUCH ASSERTIONS, OR THAT ALL SUCH ASSERTIONS THAT HAVE OR MAY BE MADE ARE SO LISTED. The text of this notice must be included in all copies of this Technical Report. # Issue History | Issue
Number | Approval Date | Publication Date | Issue Editor | Changes | |-----------------|---------------|-------------------------|--|---| | 1 | 8 May 2017 | 2 June 2017 | Joey Boyd,
ADTRAN
Ludwig Pauwels,
Nokia | Original | | 1.1 | 13 June 2018 | 17 July 2018 | Joey Boyd,
ADTRAN
Ludwig Pauwels,
Nokia | Provide YANG model updates for Layer 2 Forwarding and QoS; publish initial model for Layer 2 Multicast Management; remove YANG models with dependencies on a draft revision of ietf-hardware. | Comments or questions about this Broadband Forum Technical Report should be directed to info@broadband-forum.org. | Editors | Joey Boyd | ADTRAN | |-----------------------------|----------------|--------| | | Ludwig Pauwels | Nokia | | | | | | YANG Modules Project | Joey Boyd | ADTRAN | | Stream Leaders | Ken Kerpez | ASSIA | | | | | | Common YANG Work Area | Joey Boyd | ADTRAN | | Directors | Sven Ooghe | Nokia | # **Table of Contents** | 1 | Purp | pose and Scope | 9 | |---|----------------|-------------------------|----| | | 1.1
1.2 | Purpose Scope | | | 2 | Refe | erences and Terminology | | | _ | | | | | | 2.1 2.2 | Conventions | | | | 2.2 | Definitions | | | | 2.4 | Abbreviations | | | 3 | Tecl | hnical Report Impact | 12 | | | 3.1 | Energy Efficiency. | 12 | | | 3.2 | IPv6 | | | | 3.3 | Security | 12 | | | 3.4 | Privacy | 12 | | 4 | Mod | dules | 13 | | | 4.1 | DHCP | | | | 4.1. | | | | | 4.1.2 | | | | | 4.1 | v 1 , v 0 | | | | 4.2 | Equipment | | | | 4.3 | Ethernet | 14 | | | 4.3. | | | | | 4.4 | Layer 2 Forwarding | | | | 4.4. | <i>y y</i> 0 | | | | 4.5 | Interfaces | | | | 4.5
4.5.2 | <i>y y 1 y</i> | | | | 4.5.2
4.5.3 | y y | | | | 4.5.4 | | | | | 4.6 | PPPoE | | | | 4.6. | | | | | 4.7 | QoS | | | | 4.7. | 1 bbf-qos-classifiers | 17 | | | 4.7.2 | 2 bbf-qos-filters | 17 | | | 4.7 | J I | | | | 4.7.4 | J I J | | | | 4.7. | <i>v</i> 1 | | | | 4.7.0 | J 1 JJ U | | | | 4.7.7 | <i>y</i> 1 | | | | 4.7.8 | | | | | 4.7.9
4.7. | J 1 0 71 | | | | 4.7
4.7 | <i>J</i> 1 | | | | 4.7
4.7 | 3 1 0 | | | | 4./ | 14 UU -qus-types | 19 | | 4.8 sub-interfaces | 19 | |--|----| | 4.8.1 bbf-frame-classification | | | 4.8.2 bbf-sub-interface-tagging | 19 | | 4.8.3 bbf-sub-interfaces | | | 4.9 subscribers | | | 4.9.1 bbf-subscriber-profiles | 20 | | 4.9.2 bbf-subscriber-types | 20 | | 4.10 types | 20 | | 4.10.1 bbf-dot1q-types | 20 | | 4.10.2 bbf-if-type | 20 | | 4.10.3 bbf-inet-types | 21 | | 4.10.4 bbf-yang-types | | | 4.11 common | 21 | | 4.11.1 bbf-availability | 21 | | 4.12 Layer 2 Multicast | 21 | | 4.12.1 bbf-mgmd | 22 | | 4.12.2 bbf-mgmd-types | 23 | | 5 Documentation | 24 | | 6 Dependencies on related YANG modules and Standards | 25 | | 7 Layer 2 Forwarding Data Model | 26 | | 7.1 Sub-interfaces | 26 | | 7.1.1 Interface Usage | | | 7.2 Forwarders | | | 7.2.1 Forwarder Ports and Port Groups | | | 7.2.2 Split Horizon Profiles | | | 7.2.3 MAC Learning | | | 7.2.4 Flooding | | | | | # **List of Figures** | Figure 1 – YANG Data Model Relationships | 9 | |--|---| | Figure 2 – Sub-interface Example | | | Figure 3 – Forwarder Ports | | ## **Executive Summary** This Technical Report defines YANG data models for the management of Broadband Forum specified access network equipment used across many deployment scenarios. Broadband Forum-specified access network equipment comprises Access Nodes and FTTdp DPUs. There is no assumption for BBF YANG modules to apply globally, e.g., to apply to access network equipment other than BBF Access Nodes and FTTdp DPUs, or to apply to core network equipment. The models specified in this Technical Report are independent of any protocol. # 1 Purpose and Scope ## 1.1 Purpose This Technical Report defines YANG data models for the management of Broadband Forum specified access network equipment used across many deployment scenarios. Broadband Forum specified access network equipment comprises Access Nodes and FTTdp DPUs. There is no assumption for BBF YANG modules to apply globally, e.g., to apply to access network equipment other than BBF Access Nodes and FTTdp DPUs, or to apply to core network equipment. The models specified in this Technical Report are independent of any protocol. # 1.2 Scope The data models defined by this Technical Report support the Broadband Forum requirements as applicable to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs) and form the set of core models which can be used for a multitude of other applications. It is intended that data models which are application specific can be built on, reference, and/or function alongside the common models. The figure below provides a high level view of the functionality covered by this Technical Report (BBF YANG in green): Figure 1 – YANG Data Model Relationships # 2 References and Terminology #### 2.1 Conventions In this Technical Report, several words are used to signify the requirements of the specification. These words are always capitalized. More information can be found be in RFC 2119 [1]. | MUST | This word, or the term "REQUIRED", means that the definition is an absolute requirement of the specification. | |------------|---| | MUST NOT | This phrase means that the definition is an absolute prohibition of the specification. | | SHOULD | This word, or the term "RECOMMENDED", means that there could exist valid reasons in particular circumstances to ignore this item, but the full implications need to be understood and carefully weighed before choosing a different course. | | SHOULD NOT | This phrase, or the phrase "NOT RECOMMENDED" means that there could exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications need to be understood and the case carefully weighed before implementing any behavior described with this label. | MAY This word, or the term "OPTIONAL", means that this item is one of an allowed set of alternatives. An implementation that does not include this option MUST be prepared to inter-operate with another implementation that does include the option. #### 2.2 References The following references are of relevance to this Technical Report. At the time of publication, the editions indicated were valid. All references are subject to revision; users of this Technical Report are therefore encouraged to investigate the possibility of applying the most recent edition of the references listed below. A list of currently valid Broadband Forum Technical Reports is published at www.broadband-forum.org. | Document | | Title | Source | Year | |----------|----------|--|--------|------| | [1] | RFC 2119 | Key words for use in RFCs to Indicate Requirement Levels | IETF | 1997 | | [2] | RFC 7950 | The YANG 1.1 Data Modeling Language | IETF | 2016 | | [3] | RFC 6991 | Common YANG Data Types | IETF | 2013 | | [4] | RFC 7317 | A YANG Data Model for System Management | IETF | 2014 | | [5] | RFC 7223 | A YANG Data Model for Interface Management | IETF | 2014 | |------|---------------------|--|-------|------| | [6] | RFC 8348 | A YANG Data Model for Hardware Management | IETF | 2018 | | [7] | <u>RFC 3046</u> | DHCP Relay Agent Information Option | IETF | 2001 | | [8] | RFC 6221 | Lightweight DHCPv6 Relay Agent | IETF | 2011 | | [9] | <u>TR-101i2</u> | Migration to Ethernet-Based Broadband
Aggregation | BBF | 2011 | | [10] | <u>TR-178</u> | Multi-service Broadband Network Architecture and Nodal Requirements | BBF | 2014 | | [11] | <u>IEEE 802.3</u> | Ethernet Specification | IEEE | 2015 | | [12] | <u>IEEE 802.1ag</u> | Connectivity Fault Management | IEEE | 2007 | | [13] | <u>ITU-T Y.1731</u> | Operation, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks | ITU-T | 2015 | | [14] | MEF 35.1 | Service OAM Performance Monitoring
Implementation Agreement | MEF | 2015 | | [15] | <u>MEF 7.2</u> | Carrier Ethernet Management Information Model | MEF | 2013 | | [16] | <u>MEF 10.3</u> | Ethernet Services Attributes Phase 3 | MEF | 2013 | | | | | | | ## 2.3 Definitions The following terminology is used throughout this Technical Report. **model** A data model. **module** A YANG module defines the hierarchy of data for the data model. **submodule** A YANG module may be broken up into a multiple submodules for ease of maintainability. The overall data model is comprised of a module and zero or more submodules. #### 2.4 Abbreviations This Technical Report uses the following abbreviations: DEI Drop Eligible Indicator DHCP Dynamic Host Configuration Protocol LAG Link Aggregation Group PPPoE Point-to-Point Protocol over Ethernet # **3 Technical Report Impact** # 3.1 Energy Efficiency TR-383 has no impact on energy efficiency. ## 3.2 IPv6 TR-383 includes YANG modules that support IPv6 deployments. # 3.3 Security TR-383 has no impact on security. # 3.4 Privacy Any issues regarding privacy are not affected by TR-383. #### 4 Modules The YANG modules contained in TR-383 are briefly described here. These modules are published on GitHub at https://github.com/BroadbandForum/yang/tree/master/standard. #### **4.1 DHCP** There are three modules which are used to manage DHCP functionality. These modules can be found in the *networking* directory on Github. # 4.1.1 bbf-l2-dhcpv4-relay This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on subscriber management via the DHCPv4 protocol as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). ## 4.1.2 bbf-l2-dhcpv4-relay-forwarding This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on subscriber management via the DHCPv4 protocol as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module augments bbf-l2-forwarding with subscriber management via the DHCPv4 protocol [7]. #### 4.1.3 bbf-ldra This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on subscriber management via the DHCPv6 protocol as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). This functionality is also known as a Lightweight DHCPv6 Relay Agent (LDRA) [8]. # 4.2 Equipment The modules included in TR-383 which were based on an older revision of the IETF draft, draft-ietf-netmod-entity, have been removed from TR-383 Amendment 1. This is due to an overall architecture change in the IETF draft which rendered the BBF models obsolete. Updates are planned for a later publication. #### 4.3 Ethernet There is one module which is specific to the management of Ethernet interfaces as defined by IEEE 802.3 [11]. This module can be found in the *interface* directory on Github. ## 4.3.1 bbf-ethernet-performance-management This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on Ethernet interface management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module augments bbf-interface-performance-management with Ethernet specific counters. # 4.4 Layer 2 Forwarding There is one module which is comprised of 8 submodules which are used for the management of Layer 2 (L2) Forwarding. These modules and submodules can be found in the *networking* directory on Github. ## 4.4.1 bbf-l2-forwarding This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on layer 2 forwarding as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). # 4.4.1.1 bbf-l2-forwarding-base This submodule contains a collection of YANG definitions for defining the top level nodes for forwarding. # 4.4.1.2 bbf-l2-forwarding-flooding-policies This submodule contains a collection of YANG definitions for managing flooding policies. Flooding policies define how the system forwards frames in case other forwarding mechanisms do not arrive at a forwarding decision. # 4.4.1.3 bbf-l2-forwarding-forwarders This submodule contains a collection of YANG definitions for managing forwarders. A forwarder is used to forward traffic between two or more interfaces. ## 4.4.1.4 bbf-l2-forwarding-forwarding-databases This submodule contains a collection of YANG definitions for managing forwarding databases. A forwarding database contains the necessary information regarding the MAC addresses which are used in the forwarding decision. ## 4.4.1.5 bbf-l2-mac-learning-control This submodule contains a collection of YANG definitions for managing MAC address learning constraints, i.e. to constrain MAC learning rules compared with the standard IEEE MAC learning. ## 4.4.1.6 bbf-l2-mac-learning This submodule contains a collection of YANG definitions for managing MAC learning. For a forwarder, it specifies the forwarding database to use for the specified forwarder. For an interface, it provides the ability to enable/disable MAC learning as well as specifies other parameters associated with MAC learning. # 4.4.1.7 bbf-l2-forwarding-split-horizon-profiles This submodule contains a collection of YANG definitions for managing split horizon profiles. These profiles allow (or disallow) forwarding between various forwarder ports based on the underlying interface usage. # 4.4.1.8 bbf-l2-forwarding-shared-fdb This submodule contains a collection of YANG definitions for managing shared fowarding databases. #### 4.5 Interfaces There are four modules which augment ietf-interfaces [5] with additional interface management. These modules can be found in the *interfaces* directory on Github. # 4.5.1 bbf-interfaces-performance-management This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on interface management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module reports performance management of statistics defined by the IETF interfaces data model, ietf-interfaces (RFC 7223) [5]. # 4.5.2 bbf-interface-statistics-management This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on interface management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module augments ietf-interfaces [5] with a reset action for statistics. ## 4.5.3 bbf-interface-usage This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on interface management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of YANG definitions defining how interfaces are used. # 4.5.4 bbf-ptm-interface This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on interface management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module augments the IETF interfaces data model, ietf-interfaces (RFC 7223), with nodes for managing Packet Transfer Mode (PTM) interfaces. #### 4.6 PPPoE There is one module for managing Point-to-Point Protocol over Ethernet. This module can be found in the *networking* directory on Github. # 4.6.1 bbf-pppoe-intermediate-agent This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on subscriber management via the PPPoE protocol as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified access Nodes and FTTdp DPUs). ## 4.7 **QoS** There are twelve modules which provide management of Quality of Service (QoS). These modules can be found in the *networking* directory on Github. # 4.7.1 bbf-qos-classifiers This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of classifiers used by policies applied to packets. ## 4.7.2 bbf-qos-filters This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains definitions of filter criteria. ## 4.7.3 bbf-qos-policies This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of policies applied to packets. # 4.7.4 bbf-qos-policies-sub-interfaces This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains augments to sub-interfaces to support policies applied to packets. # 4.7.5 bbf-qos-rate-control This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a possibility to rate limit a number of frames. # 4.7.6 bbf-qos-traffic-mngt This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of functions for QoS traffic management (TM). ## 4.7.7 bbf-qos-enhanced-scheduling This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of enhanced traffic scheduling configuration. ## 4.7.8 bbf-qos-policer-envelope-profiles This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains management of Policer (also known as Bandwidth Profile) Envelope Profiles as described in MEF 10.3 [16]. # 4.7.9 bbf-policing-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains common types used for management of Policers. # 4.7.10 bbf-policing This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of type and data definitions for use of some policer types that act on an individual flow. # 4.7.11 bbf-shaping This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains shaping configuration data. ## 4.7.12 bbf-qos-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of Quality of Service (QoS) as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains type definitions used in multiple QoS modules. #### 4.8 sub-interfaces There are three modules which provide management definitions for sub-interfaces. These modules can be found in the *interfaces* directory on Github. ## 4.8.1 bbf-frame-classification This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on frame classification as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains reusable groupings defined for frame classification. # 4.8.2 bbf-sub-interface-tagging This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of sub-interfaces as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines the ingress and egress tagging of a VLAN sub-interface. #### 4.8.3 bbf-sub-interfaces This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of sub-interfaces as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). #### 4.9 subscribers There are two modules which provide management of subscriber related functionality. These modules can be found in the *networking* directory on Github. ## 4.9.1 bbf-subscriber-profiles This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of subscribers as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines subscriber profiles. ## 4.9.2 bbf-subscriber-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the management of subscribers as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines common types associated with subscribers and subscriber protocols. # **4.10** types There are four modules which provide reusable type definitions for use across all BBF YANG models. These modules can be found in the *common* directory on Github. # 4.10.1 bbf-dot1q-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on reusable data types as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines common types for support of some IEEE standards. # 4.10.2 bbf-if-type This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on reusable data types as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines interface types that are needed for BBF applications but are not defined in iana-if-type. ## 4.10.3 bbf-inet-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on reusable data types as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines generally useful derived YANG data types for Internet addresses and related things added by BBF on top of the ones defined in IETF. ## 4.10.4 bbf-yang-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on reusable data types as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module defines common types used throughout BBF data models. #### **4.11** common There is one module which provides support for common requirements for use across all BBF YANG models. This module can be found in the *common* directory on Github. # 4.11.1 bbf-availability This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on the general availability of specific resources as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). # 4.12 Layer 2 Multicast There are two modules, one of which is comprised of 5 submodules which are used for the management of Layer 2 (L2) Multicast. These modules and submodules can be found in the *networking* directory on Github. # **4.12.1** bbf-mgmd This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on layer 2 multicast management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol in systems that act as a multicast proxy, snooper, or a snooper with proxy reporting. # 4.12.1.1 bbf-mgmd-configuration-interface-to-host This module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes configuration objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol on interfaces that connect the system to multicast hosts. # 4.12.1.2 bbf-mgmd-configuration-interface-to-router This module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes configuration objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol on interfaces that connect to multicast routers. # 4.12.1.3 bbf-mgmd-configuration-multicast-snoop This module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes configuration objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol in case the system acts as a snooper. # 4.12.1.4 bbf-mgmd-operational-interface-to-host This module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes state objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol on interfaces that connect a system to multicast hosts. # 4.12.1.5 bbf-mgmd-operational-interface-to-router This module contains a collection of YANG definitions for supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes state objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol on interfaces that connect a system to multicast routers. ## 4.12.2 bbf-mgmd-types This module contains a collection of YANG definitions for supporting the Broadband Forum requirements on layer 2 multicast management as applicable to access network equipment. As such, this module is specific to access network equipment (e.g., BBF-specified Access Nodes and FTTdp DPUs). Specifically, this module contains a collection of YANG type and feature definitions for use in modules supporting the Multicast Group Membership Discovery (MGMD) Protocols. In particular, it describes objects used for managing the Internet Group Management Protocol (IGMP) and the Multicast Listener Discovery (MLD) protocol. #### 5 Documentation There are "README.md" files; these are short text files giving brief descriptions of the contents of the directories they are in. Documentation for each module can be found in the *docs* folder of the corresponding directory, e.g., *networking*. There are two types of documents per each top level module. - *.tree: Provides a tree diagram of the module. - *.xml: Provides an XML schema representation of the module Each .tree and .xml file are named according to each model's module name along with –full to indicate it the full tree and not just the nodes defined in a given module (in the case of submodule support), e.g., bbf-dhcpv4-relay-full.tree and bbf-dhcpv4-relay-full.xml # 6 Dependencies on related YANG modules and Standards TR-383 is based on YANG 1.1 (RFC 7950 [2]). The following YANG modules are used by TR-383: - ietf-interfaces [5] - ietf-yang-types [3] - ietf-inet-types [3] - ietf-system [4] # 7 Layer 2 Forwarding Data Model The intent of this section is to provide some general information regarding the usage of the layer 2 forwarding data model. It is not possible to describe every possible application which would use the model but rather it provides the theory behind the model and illustrates some general use cases. #### 7.1 Sub-interfaces Before traffic can be forwarded, it must first be classified to determine what to forward, where to forward and how to manipulate the packet if so desired. The concept of a vlan-sub-interface has been introduced for provide a VLAN interface which can be used as the source or destination interface of a forwarding decision. Each vlan-sub-interface classifies traffic from a particular lower layer interface into a forwarder. This classification consists of a set of rules specified using match criteria on to packet fields (e.g., VLAN-ID, p-bit). The lower layer interface can be either a non-aggregated physical or logical interface (e.g., Ethernet), an aggregation of physical or logical interfaces (e.g., LAG) or can be another vlan-sub-interface. A vlan-sub-interface is created each time a new forwarding context is required (e.g., 1:1 VLAN). Each vlan-sub-interface can then have multiple rules associated with it if different classification results in the same forwarding decision. For example, one rule can catch frames tagged with a particular VLAN-ID, a second rule can catch untagged frames, and a third rule can catch priority-tagged frames. The second and third rules in this example cover the concept of a port default VLAN. As stated above, multiple vlan-sub-interfaces can refer to the same lower layer interface in order to provide multiple traffic classifications based on different, but potentially overlapping, match criteria. In order to provide deterministic classification, each rule is given a priority. The scope of the priority is over all rules defined within all vlan-sub-interfaces referring to same lower layer interface. A packet ingressing the lower layer interface would then be compared to each rule starting with the highest priority rule and proceeding to the lowest priority rule. If a match occurs, the packet is process accordingly. If not match occurs, the packet is dropped. The figure below shows how two vlan-sub-interfaces are associated with the same physical interface classifying traffic for two different forwarding decisions. Figure 2 – Sub-interface Example In addition to classification of traffic, the sub-interface also contains rules for any ingress or egress actions to take on each matched packet. These actions include pushing or popping tags, rewrite of p-bits or rewrite of Drop Eligible Indication (DEI) bits. # 7.1.1 Interface Usage For the case of N:1 or N:M VLAN forwarding, the role each interface plays in the network is important to determine how traffic flow is managed. For example, in the context of an access node, traffic ingressing a user port should not normally be forwarded to another user port. Certain mechanisms to be discussed later will be used to enforce this restriction. First, however, the way in which an interface is used must be explicitly known. For this the interface usage must be configured either by the user or by the system if the usage is already known. The 3 types of interface usage are: - user port: The interface connects an access node to a user. - network port: The interface connects an access node to a network. - subtended-node port: The interface connects an access node to another access node. #### 7.2 Forwarders Once traffic has been classified and possibly manipulated, it needs to be forwarded appropriately to another sub-interface. A forwarder is used to determine how traffic is routed between two or more forwarder ports each of which is associated with a sub-interface. This forwarder can be used to handle 1:1 VLAN, N:1 VLAN and N:M VLAN applications. # 7.2.1 Forwarder Ports and Port Groups Each forwarder port is associated with a sub-interface whose underlying interface is either a user port, a network port or a subtended node port. Forwarder ports with similar forwarding characteristics can be placed into forwarding groups and referenced collectively when configuring the forwarder. Below shows the relationships between a forwarder, its forwarder ports and the referenced sub-interfaces and their lower layer interfaces. Figure 3 – Forwarder Ports In the simplest use case of a 1:1 VLAN, this is all the forwarder needs to forward traffic between two sub-interfaces. The sub-interfaces determine which packets will be forwarded and how they will be manipulated. The forwarder just provides the means to associate the sub-interfaces. ## 7.2.2 Split Horizon Profiles Once the interface usage is configured, a split horizon profile can be created and applied per forwarder to configure how traffic is forwarded between the various types of interfaces. Each profile specifies the usage of the ingress interface then lists the usages for which egress of the packet is not allowed from the ingress interface. For example, a profile could specify that for an ingress interface that is a user port, it is not allowed to send traffic to interfaces that are also user ports. # 7.2.3 MAC Learning In addition to the usage of an interface, the source and destination MAC addresses are key to making correct forwarding decisions for N:1 and N:M VLAN forwarding. Each forwarder contains configuration which determines how and if MAC source addresses are learned. It can also prevent traffic from being forwarded if it contains a certain MAC source address. Once a MAC source address is learned, it is installed in the forwarding database for a given forwarder port. When a packet egresses a forwarder port, its MAC destination address is compared to the addresses in each of the other forwarder port's forwarding database to determine where the packet should be forwarded. # 7.2.4 Flooding In the case that the destination MAC address is not found in any forwarding database, it may be desired to flood the packet to all appropriate forwarder ports. To determine when and how this flooding occurs, a flooding policy profile can be created and associated with each forwarder. Each policy can be specified for a particular interface usage (e.g., user port) and/or a specific destination MAC address. It then assigns an appropriate action of either discarding the packet or flooding it to all interfaces of specified usage(s). For example, a forwarder may be configured to flood all packets with an unknown MAC address coming from a network port to all user ports. End of Broadband Forum Technical Report TR-383